Le spectre des points fixes d’un groupe localement compact à base dénombrable est défini comme l’ensemble des tels que chaque action par isométries affines de sur admet un point fixe. Nous montrons que cet ensemble est soit vide, soit peut s’écrire sous une des formes suivantes : , pour un certain , ou , pour un certain . Ce résultat est en lien étroit avec la conjecture de C. Drutu affirmant que le spectre des points fixes est un ensemble connexe pour les actions isométriques sur .
Plus généralement, nous étudions les propriétés topologiques du spectre des points fixes sur pour des espaces mesurés arbitraires , et nous montrons des résultats partiels dans le sens de la conjecture pour les actions sur . En particulier, nous prouvons que le spectre associé aux actions dont la partie linéaire est est soit vide, soit un intervalle de la forme () ou , dès que est une représentation orthogonale associée à une action ergodique préservant la mesure sur un espace mesuré de mesure finie.
The fixed-point spectrum of a locally compact second countable group on is defined to be the set of such that every action by affine isometries of on admits a fixed-point. We show that this set is either empty, or is equal to a set of one of the following forms: , for some , or , for some . This result is closely related to a conjecture of C. Drutu which asserts that the fixed-point spectrum is connected for isometric actions on .
More generally, we study the topological properties of the fixed-point spectrum on for general measure spaces , and show partial results toward the conjecture for actions on . In particular, we prove that the spectrum associated with actions with linear part is either empty, or an interval of the form () or , whenever is an orthogonal representation associated to a measure-preserving ergodic action on a finite measure space .
Révisé le :
Accepté le :
Publié le :
Keywords: Groups with property $(T)$, orthogonal representations on $L_p$-spaces
Mot clés : Groupes avec la propriété $(T)$, représentations orthogonales sur les espaces $L_p$
Lavy, Omer 1 ; Olivier, Baptiste 2
@article{AIF_2021__71_1_1_0, author = {Lavy, Omer and Olivier, Baptiste}, title = {Fixed-point spectrum for group actions by affine isometries on $L_{p}$-spaces}, journal = {Annales de l'Institut Fourier}, pages = {1--26}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {1}, year = {2021}, doi = {10.5802/aif.3348}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3348/} }
TY - JOUR AU - Lavy, Omer AU - Olivier, Baptiste TI - Fixed-point spectrum for group actions by affine isometries on $L_{p}$-spaces JO - Annales de l'Institut Fourier PY - 2021 SP - 1 EP - 26 VL - 71 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3348/ DO - 10.5802/aif.3348 LA - en ID - AIF_2021__71_1_1_0 ER -
%0 Journal Article %A Lavy, Omer %A Olivier, Baptiste %T Fixed-point spectrum for group actions by affine isometries on $L_{p}$-spaces %J Annales de l'Institut Fourier %D 2021 %P 1-26 %V 71 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3348/ %R 10.5802/aif.3348 %G en %F AIF_2021__71_1_1_0
Lavy, Omer; Olivier, Baptiste. Fixed-point spectrum for group actions by affine isometries on $L_{p}$-spaces. Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 1-26. doi : 10.5802/aif.3348. https://aif.centre-mersenne.org/articles/10.5802/aif.3348/
[1] et al. Property (T) and rigidity for actions on Banach spaces, Acta Math., Volume 198 (2007) no. 1, pp. 57-105 | DOI | MR | Zbl
[2] A fixed point theorem for -spaces, Invent. Math., Volume 189 (2012) no. 1, pp. 143-148 | DOI
[3] Cohomology of deformations, J. Topol. Anal., Volume 7 (2015) no. 01, pp. 81-104 | DOI | MR | Zbl
[4] Kazhdan’s property (T), 11, Cambridge University Press, 2008 | MR | Zbl
[5] On groups with property (), J. Funct. Anal., Volume 267 (2014) no. 3, pp. 643-659 | DOI | Zbl
[6] Geometric nonlinear functional analysis, 48, American Mathematical Society, 1998 | Zbl
[7] Cohomologie et actions isométriques propres sur les espaces , Geometry, Topology, and Dynamics in Negative Curvature (London Mathematical Society Lecture Note Series), Volume 425, Cambridge University Press, 2016, 84 pages | DOI | MR | Zbl
[8] Vanishing and non-vanishing for the first -cohomology of groups, Comment. Math. Helv., Volume 80 (2005) no. 2, pp. 377-389 | DOI | MR | Zbl
[9] Kazhdan and Haagerup properties from the median viewpoint (2007) (https://arxiv.org/abs/0704.3749) | Zbl
[10] Property T and asymptotically invariant sequences, Isr. J. Math., Volume 37 (1980) no. 3, pp. 209-210 | DOI | MR | Zbl
[11] Property implies property for (2014) (https://arxiv.org/abs/1409.4609) | Zbl
[12] Geometric group theory. Volume 2: Asymptotic invariants of infinite groups, London Mathematical Society Lecture Note Series, 182, Cambridge University Press, 1993, pp. 1-295 | Zbl
[13] Ultraproducts in Banach space theory, Zentralinst. für Math. und Mechanik, 1979 | Zbl
[14] Strong property (T) for higher-rank simple Lie groups, Proc. Lond. Math. Soc., Volume 111 (2015) no. 4, pp. 936-966 | DOI | MR | Zbl
[15] Classical Banach spaces II: function spaces, 97, Springer, 2013 | Zbl
[16] Fixed point properties and second bounded cohomology of universal lattices on Banach spaces, J. Reine Angew. Math., Volume 2011 (2011) no. 653, pp. 115-134 | MR | Zbl
[17] Fixed point property for universal lattice on Schatten classes, Proc. Am. Math. Soc., Volume 141 (2013) no. 1, pp. 65-81 | DOI | MR | Zbl
[18] et al. compression, traveling salesmen, and stable walks, Duke Math. J., Volume 157 (2011) no. 1, pp. 53-108 | MR | Zbl
[19] Proper isometric actions of hyperbolic groups on -spaces, Compos. Math., Volume 149 (2013) no. 5, pp. 773-792 | DOI | MR
[20] Group actions on Banach spaces (2013) (https://arxiv.org/abs/1302.6609)
[21] Kazhdanś property (T) with respect to non-commutative -spaces, Proc. Am. Math. Soc., Volume 140 (2012) no. 12, pp. 4259-4269 | DOI | MR | Zbl
[22] Rigidité et non-rigidité d’actions de groupes sur les espaces Lp non-commutatifs, Ph. D. Thesis, Rennes 1 (France) (2013)
[23] Hölder estimates for the noncommutative Mazur maps, Arch. Math., Volume 104 (2015) no. 1, pp. 37-45 | DOI | Zbl
[24] Hyperbolic groups admit proper affine isometric actions on -spaces (2004) (https://arxiv.org/abs/math/0411234)
Cité par Sources :