Étant donnée une correspondance entre une courbe modulaire et une courbe elliptique , nous prouvons que l’intersection de tout sous-groupe de rang fini de avec l’ensemble de points de d’une classe isogénie sur est fini. Le question a été posée par A. Buium et B. Poonen en 2009. Nous suivons la stratégie proposée par les auteurs, utilisant un résultat sur l’équidistribution des points de Hecke sur les variétés de Shimura et le théorème de l’image ouverte de Serre. Le résultat est un cas particulier de la conjecture de Zilber–Pink.
Given a correspondence between a modular curve and an elliptic curve , we prove that the intersection of any finite-rank subgroup of with the set of points on corresponding to an isogeny class on is finite. The question was proposed by A. Buium and B. Poonen in 2009. We follow the strategy proposed by the authors, using a result about the equidistribution of Hecke points on Shimura varieties and Serre’s open image theorem. The result is an instance of the Zilber–Pink conjecture.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3317
Keywords: modular curve, Shimura curve, isogeny classes, unlikely intersections and Zilber–Pink conjecture.
Mot clés : courbe modulaire, courbe de Shimura, classes d’isogénie, intersections atypiques et conjecture de Zilber–Pink.
Baldi, Gregorio 1
@article{AIF_2020__70_2_457_0, author = {Baldi, Gregorio}, title = {On a conjecture of {Buium} and {Poonen}}, journal = {Annales de l'Institut Fourier}, pages = {457--477}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {2}, year = {2020}, doi = {10.5802/aif.3317}, zbl = {07144489}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3317/} }
TY - JOUR AU - Baldi, Gregorio TI - On a conjecture of Buium and Poonen JO - Annales de l'Institut Fourier PY - 2020 SP - 457 EP - 477 VL - 70 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3317/ DO - 10.5802/aif.3317 LA - en ID - AIF_2020__70_2_457_0 ER -
%0 Journal Article %A Baldi, Gregorio %T On a conjecture of Buium and Poonen %J Annales de l'Institut Fourier %D 2020 %P 457-477 %V 70 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3317/ %R 10.5802/aif.3317 %G en %F AIF_2020__70_2_457_0
Baldi, Gregorio. On a conjecture of Buium and Poonen. Annales de l'Institut Fourier, Tome 70 (2020) no. 2, pp. 457-477. doi : 10.5802/aif.3317. https://aif.centre-mersenne.org/articles/10.5802/aif.3317/
[1] Independence of points on elliptic curves arising from special points on modular and Shimura curves. I. Global results, Duke Math. J., Volume 147 (2009) no. 1, pp. 181-191 | DOI | MR | Zbl
[2] Independence of points on elliptic curves arising from special points on modular and Shimura curves. II. Local results, Compos. Math., Volume 145 (2009) no. 3, pp. 566-602 | DOI | MR | Zbl
[3] Integral models of certain Shimura curves, Duke Math. J., Volume 87 (1997) no. 3, pp. 591-612 | DOI | MR | Zbl
[4] Galois-generic points on Shimura varieties, Algebra Number Theory, Volume 10 (2016) no. 9, pp. 1893-1934 | DOI | MR | Zbl
[5] Hecke operators and equidistribution of Hecke points, Invent. Math., Volume 144 (2001) no. 2, pp. 327-351 | DOI | MR | Zbl
[6] Travaux de Shimura, Séminaire Bourbaki (1970/71) (Lecture Notes in Mathematics), Volume 244, Springer, 1971, pp. 123-165 | DOI | Numdam | MR | Zbl
[7] Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proceedings of Symposia in Pure Mathematics), Volume XXXIII, American Mathematical Society, 1979, pp. 247-289 | MR | Zbl
[8] Unlikely intersections between isogeny orbits and curves (2018) (https://arxiv.org/abs/1801.05701)
[9] Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math., Volume 92 (1988) no. 1, pp. 73-90 | DOI | MR | Zbl
[10] Ergodic theoretic proof of equidistribution of Hecke points, Ergodic Theory Dyn. Syst., Volume 26 (2006) no. 1, pp. 163-167 | DOI | MR | Zbl
[11] A special point problem of André–Pink–Zannier in the universal family of Abelian varieties, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (2017) no. 1, pp. 231-266 | MR | Zbl
[12] Polarisations et isogénies, Duke Math. J., Volume 163 (2014) no. 11, pp. 2057-2108 | DOI | MR | Zbl
[13] Bi-algebraic geometry and the André–Oort conjecture, Algebraic geometry: Salt Lake City 2015 (Proceedings of Symposia in Pure Mathematics), Volume 97, American Mathematical Society, 2018, pp. 319-359 | MR | Zbl
[14] Isogeny estimates for abelian varieties, and finiteness theorems, Ann. Math., Volume 137 (1993) no. 3, pp. 459-472 | DOI | MR | Zbl
[15] Canonical models of (mixed) Shimura varieties and automorphic vector bundles, Automorphic forms, Shimura varieties, and -functions, Vol. I (Ann Arbor, MI, 1988) (Perspectives in Mathematics), Volume 10, Academic Press Inc., 1990, pp. 283-414 | MR | Zbl
[16] On the asymptotic behaviour of Heegner points, Turk. J. Math., Volume 23 (1999) no. 4, pp. 549-556 | MR | Zbl
[17] On -adic representations of Galois groups obtained from certain two-dimensional abelian varieties, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 21 (1974), pp. 299-308 | MR | Zbl
[18] Families of abelian varieties with many isogenous fibres, J. Reine Angew. Math., Volume 705 (2015), pp. 211-231 | DOI | MR | Zbl
[19] O-minimality and the André-Oort conjecture for , Ann. Math., Volume 173 (2011) no. 3, pp. 1779-1840 | DOI | MR | Zbl
[20] Rational points in periodic analytic sets and the Manin–Mumford conjecture, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., Volume 19 (2008) no. 2, pp. 149-162 | DOI | MR | Zbl
[21] Arithmetical compactification of mixed Shimura varieties, Bonner Mathematische Schriften, 209, Universität Bonn, 1990, xviii+340 pages (Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1989) | MR | Zbl
[22] A combination of the conjectures of Mordell–Lang and André–Oort, Geometric methods in algebra and number theory (Progress in Mathematics), Volume 235, Birkhäuser, 2005, pp. 251-282 | DOI | MR | Zbl
[23] A Common Generalization of the Conjectures of André–Oort, Manin–Mumford, and Mordell–Lang (2005) (Available at https://people.math.ethz.ch/~pink/ftp/AOMMML.pdf. Accessed in 2018) | Zbl
[24] Mordell-Lang plus Bogomolov, Invent. Math., Volume 137 (1999) no. 2, pp. 413-425 | DOI | MR | Zbl
[25] Abelian -adic representations and elliptic curves, McGill University lecture notes, W. A. Benjamin, 1968, xvi+177 pages (written with the collaboration of Willem Kuyk and John Labute) | MR | Zbl
[26] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972) no. 4, pp. 259-331 | DOI | MR | Zbl
[27] The André-Oort conjecture for , Ann. Math., Volume 187 (2018) no. 2, pp. 379-390 | DOI | MR | Zbl
[28] Distribution of almost division points, Duke Math. J., Volume 103 (2000) no. 1, pp. 39-46 | DOI | MR | Zbl
[29] Equidistribution of CM-points on quaternion Shimura varieties, Int. Math. Res. Not. (2005) no. 59, pp. 3657-3689 | DOI | MR | Zbl
Cité par Sources :