Nous étudions le problème de Plateau paramétrique dans des variétés riemanniennes générales pour des hypersurfaces localement strictement convexes (LSC) et à courbure prescrite pour une classe générale de fonctions de courbure convexes. Nous établissons une condition scalaire pour l’existence de solutions dans le cas où il existe une barrière externe et la variété ambiante est une variété d’Hadamard
We present a novel and comprehensive approach to the study of the parametric Plateau problem for locally strictly convex (LSC) hypersurfaces of prescribed curvature for general convex curvature functions inside general Riemannian manifolds. We prove existence of solutions to the Plateau problem with outer barrier for LSC hypersurfaces of constant or prescribed curvature for general curvature functions inside general Hadamard manifolds modulo a single scalar condition. In particular, convex curvature functions of bounded type are fully treated.
Accepté le :
Publié le :
Keywords: Plateau problem, non-linear elliptic PDEs
Mot clés : problème de Plateau, EDPs elliptiques non linéaires
Smith, Graham 1
@article{AIF_2020__70_1_1_0, author = {Smith, Graham}, title = {The {Plateau} problem for convex curvature functions}, journal = {Annales de l'Institut Fourier}, pages = {1--66}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {1}, year = {2020}, doi = {10.5802/aif.3308}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3308/} }
TY - JOUR AU - Smith, Graham TI - The Plateau problem for convex curvature functions JO - Annales de l'Institut Fourier PY - 2020 SP - 1 EP - 66 VL - 70 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3308/ DO - 10.5802/aif.3308 LA - en ID - AIF_2020__70_1_1_0 ER -
%0 Journal Article %A Smith, Graham %T The Plateau problem for convex curvature functions %J Annales de l'Institut Fourier %D 2020 %P 1-66 %V 70 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3308/ %R 10.5802/aif.3308 %G en %F AIF_2020__70_1_1_0
Smith, Graham. The Plateau problem for convex curvature functions. Annales de l'Institut Fourier, Tome 70 (2020) no. 1, pp. 1-66. doi : 10.5802/aif.3308. https://aif.centre-mersenne.org/articles/10.5802/aif.3308/
[1] The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations, Commun. Pure Appl. Math., Volume 38 (1985) no. 2, pp. 209-252 | DOI | MR | Zbl
[2] The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge–Ampère equation, Commun. Pure Appl. Math., Volume 37 (1984) no. 3, pp. 369-402 | DOI | MR | Zbl
[3] The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1985) no. 3-4, pp. 261-301 | DOI | MR | Zbl
[4] Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces, Commun. Pure Appl. Math., Volume 41 (1988) no. 1, pp. 47-70 | DOI | MR | Zbl
[5] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001, xiv+517 pages (Reprint of the 1998 edition) | MR | Zbl
[6] Boundary-value problems on for surfaces of constant Gauss curvature, Ann. Math., Volume 138 (1993) no. 3, pp. 601-624 | DOI | MR | Zbl
[7] The existence of hypersurfaces of constant Gauss curvature with prescribed boundary, J. Differ. Geom., Volume 62 (2002) no. 2, pp. 259-287 http://projecteuclid.org/euclid.jdg/1090950194 | DOI | MR | Zbl
[8] Locally convex hypersurfaces of constant curvature with boundary, Commun. Pure Appl. Math., Volume 57 (2004) no. 10, pp. 1311-1331 | DOI | MR | Zbl
[9] Convex hypersurfaces of constant curvature in hyperbolic space, Surveys in geometric analysis and relativity (Advanced Lectures in Mathematics (ALM)), Volume 20, International Press., 2011, pp. 241-257 | MR | Zbl
[10] A priori estimate of of convex solutions of the Dirichlet problem for the Monge–Ampère equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., Volume 96 (1980), pp. 69-79 | MR | Zbl
[11] Un lemme de Morse pour les surfaces convexes, Invent. Math., Volume 141 (2000) no. 2, pp. 239-297 | DOI | MR | Zbl
[12] Degree Theory of Immersed Hypersurfaces (2010) (https://arxiv.org/abs/1010.1879)
[13] Interior curvature bounds for a class of curvature equations, Duke Math. J., Volume 123 (2004) no. 2, pp. 235-264 | DOI | MR | Zbl
[14] The non-linear Dirichlet problem in Hadamard manifolds (http://www.crm.cat/en/Publications/Publications/2009/Preprints/Pr870.pdf) | Zbl
[15] An Arzela–Ascoli theorem for immersed submanifolds, Ann. Fac. Sci. Toulouse, Math., Volume 16 (2007) no. 4, pp. 817-866 | DOI | Numdam | MR | Zbl
[16] Moduli of flat conformal structures of hyperbolic type, Geom. Dedicata, Volume 154 (2011), pp. 47-80 | DOI | MR | Zbl
[17] Compactness results for immersions of prescribed Gaussian curvature I. Analytic aspects, Adv. Math., Volume 229 (2012) no. 2, pp. 731-769 | DOI | MR | Zbl
[18] The non-linear Plateau problem in non-positively curved manifolds, Trans. Am. Math. Soc., Volume 365 (2013) no. 3, pp. 1109-1124 | DOI | MR | Zbl
[19] Special Lagrangian curvature, Math. Ann., Volume 355 (2013) no. 1, pp. 57-95 | DOI | MR | Zbl
[20] Compactness for immersions of prescribed Gaussian curvature II: geometric aspects, Geom. Dedicata, Volume 172 (2014), pp. 303-350 | DOI | MR | Zbl
[21] Global singularity theory for the Gauss curvature equation, Ensaios Matemáticos, 28, Sociedade Brasileira de Matemática, 2015, 114 pages | MR | Zbl
[22] Fully nonlinear elliptic equations and applications to geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (1995), pp. 1145-1152 | DOI | MR | Zbl
[23] On the Dirichlet problem for Hessian equations, Acta Math., Volume 175 (1995) no. 2, pp. 151-164 | DOI | MR | Zbl
[24] On locally convex hypersurfaces with boundary, J. Reine Angew. Math., Volume 551 (2002), pp. 11-32 | DOI | MR | Zbl
[25] The space of -dimensional surfaces that are stationary for a parametric elliptic functional, Indiana Univ. Math. J., Volume 36 (1987) no. 3, pp. 567-602 | DOI | MR | Zbl
[26] The space of minimal submanifolds for varying Riemannian metrics, Indiana Univ. Math. J., Volume 40 (1991) no. 1, pp. 161-200 | DOI | MR | Zbl
Cité par Sources :