The Plateau problem for convex curvature functions
[Le problème de Plateau pour des fonctions de courbure convexes]
Annales de l'Institut Fourier, Tome 70 (2020) no. 1, pp. 1-66.

Nous étudions le problème de Plateau paramétrique dans des variétés riemanniennes générales pour des hypersurfaces localement strictement convexes (LSC) et à courbure prescrite pour une classe générale de fonctions de courbure convexes. Nous établissons une condition scalaire pour l’existence de solutions dans le cas où il existe une barrière externe et la variété ambiante est une variété d’Hadamard

We present a novel and comprehensive approach to the study of the parametric Plateau problem for locally strictly convex (LSC) hypersurfaces of prescribed curvature for general convex curvature functions inside general Riemannian manifolds. We prove existence of solutions to the Plateau problem with outer barrier for LSC hypersurfaces of constant or prescribed curvature for general curvature functions inside general Hadamard manifolds modulo a single scalar condition. In particular, convex curvature functions of bounded type are fully treated.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3308
Classification : 58E12, 35J25, 35J60, 53C21, 53C42
Keywords: Plateau problem, non-linear elliptic PDEs
Mot clés : problème de Plateau, EDPs elliptiques non linéaires

Smith, Graham 1

1 Instituto de Matemática, UFRJ, Av. Athos da Silveira Ramos 149, Centro de Tecnologia - Bloco C, Cidade Universitária - Ilha do Fundão, Caixa Postal 68530, 21941-909, Rio de Janeiro, RJ (Brazil)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2020__70_1_1_0,
     author = {Smith, Graham},
     title = {The {Plateau} problem for convex curvature functions},
     journal = {Annales de l'Institut Fourier},
     pages = {1--66},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {1},
     year = {2020},
     doi = {10.5802/aif.3308},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3308/}
}
TY  - JOUR
AU  - Smith, Graham
TI  - The Plateau problem for convex curvature functions
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 1
EP  - 66
VL  - 70
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3308/
DO  - 10.5802/aif.3308
LA  - en
ID  - AIF_2020__70_1_1_0
ER  - 
%0 Journal Article
%A Smith, Graham
%T The Plateau problem for convex curvature functions
%J Annales de l'Institut Fourier
%D 2020
%P 1-66
%V 70
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3308/
%R 10.5802/aif.3308
%G en
%F AIF_2020__70_1_1_0
Smith, Graham. The Plateau problem for convex curvature functions. Annales de l'Institut Fourier, Tome 70 (2020) no. 1, pp. 1-66. doi : 10.5802/aif.3308. https://aif.centre-mersenne.org/articles/10.5802/aif.3308/

[1] Caffarelli, Luis; Kohn, Joseph J.; Nirenberg, Louis; Spruck, Joel The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations, Commun. Pure Appl. Math., Volume 38 (1985) no. 2, pp. 209-252 | DOI | MR | Zbl

[2] Caffarelli, Luis; Nirenberg, Louis; Spruck, Joel The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge–Ampère equation, Commun. Pure Appl. Math., Volume 37 (1984) no. 3, pp. 369-402 | DOI | MR | Zbl

[3] Caffarelli, Luis; Nirenberg, Louis; Spruck, Joel The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math., Volume 155 (1985) no. 3-4, pp. 261-301 | DOI | MR | Zbl

[4] Caffarelli, Luis; Nirenberg, Louis; Spruck, Joel Nonlinear second-order elliptic equations. V. The Dirichlet problem for Weingarten hypersurfaces, Commun. Pure Appl. Math., Volume 41 (1988) no. 1, pp. 47-70 | DOI | MR | Zbl

[5] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001, xiv+517 pages (Reprint of the 1998 edition) | MR | Zbl

[6] Guan, Bo; Spruck, Joel Boundary-value problems on S n for surfaces of constant Gauss curvature, Ann. Math., Volume 138 (1993) no. 3, pp. 601-624 | DOI | MR | Zbl

[7] Guan, Bo; Spruck, Joel The existence of hypersurfaces of constant Gauss curvature with prescribed boundary, J. Differ. Geom., Volume 62 (2002) no. 2, pp. 259-287 http://projecteuclid.org/euclid.jdg/1090950194 | DOI | MR | Zbl

[8] Guan, Bo; Spruck, Joel Locally convex hypersurfaces of constant curvature with boundary, Commun. Pure Appl. Math., Volume 57 (2004) no. 10, pp. 1311-1331 | DOI | MR | Zbl

[9] Guan, Bo; Spruck, Joel Convex hypersurfaces of constant curvature in hyperbolic space, Surveys in geometric analysis and relativity (Advanced Lectures in Mathematics (ALM)), Volume 20, International Press., 2011, pp. 241-257 | MR | Zbl

[10] Ivočkina, Nina M. A priori estimate of |u| C 2 (Ω ¯) of convex solutions of the Dirichlet problem for the Monge–Ampère equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov., Volume 96 (1980), pp. 69-79 | MR | Zbl

[11] Labourie, François Un lemme de Morse pour les surfaces convexes, Invent. Math., Volume 141 (2000) no. 2, pp. 239-297 | DOI | MR | Zbl

[12] Rosenberg, Harold; Smith, Graham Degree Theory of Immersed Hypersurfaces (2010) (https://arxiv.org/abs/1010.1879)

[13] Sheng, Weimin; Urbas, John; Wang, Xu-Jia Interior curvature bounds for a class of curvature equations, Duke Math. J., Volume 123 (2004) no. 2, pp. 235-264 | DOI | MR | Zbl

[14] Smith, Graham The non-linear Dirichlet problem in Hadamard manifolds (http://www.crm.cat/en/Publications/Publications/2009/Preprints/Pr870.pdf) | Zbl

[15] Smith, Graham An Arzela–Ascoli theorem for immersed submanifolds, Ann. Fac. Sci. Toulouse, Math., Volume 16 (2007) no. 4, pp. 817-866 | DOI | Numdam | MR | Zbl

[16] Smith, Graham Moduli of flat conformal structures of hyperbolic type, Geom. Dedicata, Volume 154 (2011), pp. 47-80 | DOI | MR | Zbl

[17] Smith, Graham Compactness results for immersions of prescribed Gaussian curvature I. Analytic aspects, Adv. Math., Volume 229 (2012) no. 2, pp. 731-769 | DOI | MR | Zbl

[18] Smith, Graham The non-linear Plateau problem in non-positively curved manifolds, Trans. Am. Math. Soc., Volume 365 (2013) no. 3, pp. 1109-1124 | DOI | MR | Zbl

[19] Smith, Graham Special Lagrangian curvature, Math. Ann., Volume 355 (2013) no. 1, pp. 57-95 | DOI | MR | Zbl

[20] Smith, Graham Compactness for immersions of prescribed Gaussian curvature II: geometric aspects, Geom. Dedicata, Volume 172 (2014), pp. 303-350 | DOI | MR | Zbl

[21] Smith, Graham Global singularity theory for the Gauss curvature equation, Ensaios Matemáticos, 28, Sociedade Brasileira de Matemática, 2015, 114 pages | MR | Zbl

[22] Spruck, Joel Fully nonlinear elliptic equations and applications to geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (1995), pp. 1145-1152 | DOI | MR | Zbl

[23] Trudinger, Neil S. On the Dirichlet problem for Hessian equations, Acta Math., Volume 175 (1995) no. 2, pp. 151-164 | DOI | MR | Zbl

[24] Trudinger, Neil S.; Wang, Xu-Jia On locally convex hypersurfaces with boundary, J. Reine Angew. Math., Volume 551 (2002), pp. 11-32 | DOI | MR | Zbl

[25] White, Brian The space of m-dimensional surfaces that are stationary for a parametric elliptic functional, Indiana Univ. Math. J., Volume 36 (1987) no. 3, pp. 567-602 | DOI | MR | Zbl

[26] White, Brian The space of minimal submanifolds for varying Riemannian metrics, Indiana Univ. Math. J., Volume 40 (1991) no. 1, pp. 161-200 | DOI | MR | Zbl

Cité par Sources :