Homotopy groups of generic leaves of logarithmic foliations
[Groupes d’homotopie des feuilles generiques des feuilletages logarithmiques]
Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2811-2824.

Nous étudions les groupes d’homotopie des feuilles génériques des feuilletages logarithmiques sur les variétes projetives complexes. Nous montrons une relation entre les groupes d’homotopie d’une feuille générique et ceux du complement du diviseur des pôles du feuilletage logarithmique.

We study the homotopy groups of generic leaves of logarithmic foliations on complex projective manifolds. We exhibit a relation between the homotopy groups of a generic leaf and of the complement of the polar divisor of the logarithmic foliation.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3307
Classification : 14J99, 32Q55, 55Q52
Keywords: Holomorphic foliations, Logarithmic, Topology of leaves
Mot clés : Feuilletages holomorphes, Logarithmique, Topologie de feuilles

Rodríguez-Guzmán, Diego 1

1 CIMAT Dept. de matemáticas básicas C. Valenciana s/n Guanajuato, GTO. CP:36023 (México)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_6_2811_0,
     author = {Rodr{\'\i}guez-Guzm\'an, Diego},
     title = {Homotopy groups of generic leaves of logarithmic foliations},
     journal = {Annales de l'Institut Fourier},
     pages = {2811--2824},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {6},
     year = {2019},
     doi = {10.5802/aif.3307},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3307/}
}
TY  - JOUR
AU  - Rodríguez-Guzmán, Diego
TI  - Homotopy groups of generic leaves of logarithmic foliations
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 2811
EP  - 2824
VL  - 69
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3307/
DO  - 10.5802/aif.3307
LA  - en
ID  - AIF_2019__69_6_2811_0
ER  - 
%0 Journal Article
%A Rodríguez-Guzmán, Diego
%T Homotopy groups of generic leaves of logarithmic foliations
%J Annales de l'Institut Fourier
%D 2019
%P 2811-2824
%V 69
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3307/
%R 10.5802/aif.3307
%G en
%F AIF_2019__69_6_2811_0
Rodríguez-Guzmán, Diego. Homotopy groups of generic leaves of logarithmic foliations. Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2811-2824. doi : 10.5802/aif.3307. https://aif.centre-mersenne.org/articles/10.5802/aif.3307/

[1] Cerveau, Dominique Quelques problèmes en géométrie feuilletée pour les 60 années de l’IMPA, Bull. Braz. Math. Soc. (N.S.), Volume 44 (2013) no. 4, p. 653-79 | DOI | Zbl

[2] Cukierman, Fernando; Soares, Marcio G.; Vainsencher, Israel Singularities of logarithmic foliations, Compos. Math., Volume 142 (2006) no. 1, pp. 131-142 | DOI | MR | Zbl

[3] Davis, James F.; Kirk, Paul Lecture notes in algebraic topology, Graduate Studies in Mathematics, 35, American Mathematical Society, 2001 | MR | Zbl

[4] Dimca, Alexandru Singularities and topology of hypersurfaces, Universitext, Springer, 2012 | Zbl

[5] Dũng Tráng, Lê; Hamm, Helmut A. Un théorème de Zariski du type de Lefschetz, Ann. Sci. Éc. Norm. Supér., Volume 6 (1973) no. 3, pp. 317-355 | Zbl

[6] Hatcher, Allen Algebraic topology, Cambridge University Press, 2002 | MR | Zbl

[7] Libgober, Anatoly Homotopy groups of complements to ample divisors (2004) (https://arxiv.org/abs/math/0404341) | Zbl

[8] Milnor, John Singular points of complex hypersurfaces., Annals of Mathematics Studies, 61, Princeton University Press, 2016 | Zbl

[9] Simpson, Carlos Lefschetz theorems for the integral leaves of a holomorphic one-form, Compos. Math., Volume 87 (1993) no. 1, pp. 99-113 | MR | Zbl

Cité par Sources :