Nous introduisons une formulation faisceau-théorique de la théorie de Shimura des formes modulaires de Siegel quasi holomorphes et des opérateurs différentiels. Nous l’utilisons pour définir et étudier les formes modulaires de Siegel quasi surconvergentes et leurs familles p-adiques
We introduce a sheaf-theoretic formulation of Shimura’s theory of nearly holomorphic Siegel modular forms and differential operators. We use it to define and study nearly overconvergent Siegel modular forms and their -adic families.
Révisé le :
Accepté le :
Publié le :
Keywords: nearly holomorphic Siegel modular forms, nearly overconvergent Siegel modular forms, differential operators, overconvergent families
Mot clés : formes modulaires de Siegel quasi holomorphes, formes modulaires de Siegel quasi surconvergentes, opérateurs différentiels, familles surconvergentes
Liu, Zheng 1
@article{AIF_2019__69_6_2439_0, author = {Liu, Zheng}, title = {Nearly overconvergent {Siegel} modular forms}, journal = {Annales de l'Institut Fourier}, pages = {2439--2506}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {6}, year = {2019}, doi = {10.5802/aif.3299}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3299/} }
TY - JOUR AU - Liu, Zheng TI - Nearly overconvergent Siegel modular forms JO - Annales de l'Institut Fourier PY - 2019 SP - 2439 EP - 2506 VL - 69 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3299/ DO - 10.5802/aif.3299 LA - en ID - AIF_2019__69_6_2439_0 ER -
%0 Journal Article %A Liu, Zheng %T Nearly overconvergent Siegel modular forms %J Annales de l'Institut Fourier %D 2019 %P 2439-2506 %V 69 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3299/ %R 10.5802/aif.3299 %G en %F AIF_2019__69_6_2439_0
Liu, Zheng. Nearly overconvergent Siegel modular forms. Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2439-2506. doi : 10.5802/aif.3299. https://aif.centre-mersenne.org/articles/10.5802/aif.3299/
[1] Triple product -adic -functions associated to finite slope -adic families of modular forms (2017) (with an appendix by Eric Urban, https://arxiv.org/abs/1708.02785)
[2] -adic families of Siegel modular cuspforms, Ann. Math., Volume 181 (2015) no. 2, pp. 623-697 | DOI | MR | Zbl
[3] Structure of representations that are generated by vectors of highest weight, Funkts. Anal. Prilozh., Volume 5 (1971) no. 1, pp. 1-9 | DOI | MR
[4] Generalized Heegner cycles and -adic Rankin -series, Duke Math. J., Volume 162 (2013) no. 6, pp. 1033-1148 (With an appendix by Brian Conrad) | DOI | MR | Zbl
[5] Classicité de formes modulaires surconvergentes, Ann. Math., Volume 183 (2016) no. 3, pp. 975-1014 | DOI | Zbl
[6] Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen II, Math. Z., Volume 189 (1985) no. 1, pp. 81-110 | DOI | Zbl
[7] -adic measures attached to Siegel modular forms, Ann. Inst. Fourier, Volume 50 (2000) no. 5, pp. 1375-1443 | DOI | MR | Zbl
[8] Non-Archimedean analysis. A systematic approach to rigid analytic geometry, Grundlehren der Mathematischen Wissenschaften, 261, Springer, 1984, xii+436 pages | Zbl
[9] Eigenvarieties, -functions and Galois representations (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2007, pp. 59-120 | DOI | MR | Zbl
[10] -adic Banach spaces and families of modular forms, Invent. Math., Volume 127 (1997) no. 3, pp. 417-479 | DOI | MR | Zbl
[11] Non-Archimedean -functions and arithmetical Siegel modular forms, Lecture Notes in Mathematics, 1471, Springer, 2004, viii+196 pages | MR | Zbl
[12] -adic differential operators on automorphic forms on unitary groups, Ann. Inst. Fourier, Volume 62 (2012) no. 1, pp. 177-243 | DOI | MR | Zbl
[13] Differential operators and families of automorphic forms on unitary groups of arbitrary signature, Doc. Math., Volume 23 (2018), pp. 445-495 | MR | Zbl
[14] -adic -functions for unitary groups, part II: zeta-integral calculations (2016) (https://arxiv.org/abs/1602.01776)
[15] -adic Eisenstein series and -functions of certain cusp forms on definite unitary groups, J. Inst. Math. Jussieu, Volume 15 (2016) no. 3, pp. 471-510 | DOI | MR | Zbl
[16] Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 22, Springer, 1990, xii+316 pages (With an appendix by David Mumford) | MR | Zbl
[17] La filtration canonique des points de torsion des groupes -divisibles, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011) no. 6, pp. 905-961 (With collaboration of Yichao Tian) | DOI | MR | Zbl
[18] Rigid analytic geometry and its applications, Progress in Mathematics, 218, Birkhäuser, 2004, xii+296 pages | MR | Zbl
[19] Arithmetic vector bundles and automorphic forms on Shimura varieties. II, Compos. Math., Volume 60 (1986) no. 3, pp. 323-378 | MR | Zbl
[20] -functions and periods of polarized regular motives, J. Reine Angew. Math., Volume 483 (1997), pp. 75-161 | MR | Zbl
[21] Cohomological automorphic forms on unitary groups. II. Period relations and values of -functions, Harmonic analysis, group representations, automorphic forms and invariant theory (Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore), Volume 12, World Scientific, 2007, pp. 89-149 | DOI | MR | Zbl
[22] A simple proof of rationality of Siegel-Weil Eisenstein series, Eisenstein series and applications (Progress in Mathematics), Volume 258, Birkhäuser, 2008, pp. 149-185 | DOI | MR | Zbl
[23] Gauss-Manin connections for -adic families of nearly overconvergent modular forms, Ann. Inst. Fourier, Volume 64 (2014) no. 6, pp. 2449-2464 | DOI | MR | Zbl
[24] A -adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier, Volume 38 (1988) no. 3, pp. 1-83 | DOI | MR | Zbl
[25] Elementary theory of -functions and Eisenstein series, London Mathematical Society Student Texts, 26, Cambridge University Press, 1993 | MR | Zbl
[26] -adic automorphic forms on Shimura varieties, Springer Monographs in Mathematics, Springer, 2004, xii+390 pages | MR | Zbl
[27] On differential operators on automorphic forms and invariant pluri-harmonic polynomials, Comment. Math. Univ. St. Pauli, Volume 48 (1999) no. 1, pp. 103-118 | MR | Zbl
[28] Integrality of nearly (holomorphic) Siegel modular forms (2015) (https://arxiv.org/abs/1508.03138)
[29] Restrictions and expansions of holomorphic representations, J. Funct. Anal., Volume 34 (1979) no. 1, pp. 29-53 | DOI | MR | Zbl
[30] -adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Mathematics), Volume 350, Springer, 1973, pp. 69-190 | DOI | MR | Zbl
[31] Travaux de Dwork, Séminaire Bourbaki (1971/1972) (Lecture Notes in Mathematics), Volume 317, Springer, 1973, pp. 167-200 | DOI | MR | Zbl
[32] -adic -functions for CM fields, Invent. Math., Volume 49 (1978) no. 3, pp. 199-297 | DOI | MR | Zbl
[33] On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ., Volume 8 (1968), pp. 199-213 | DOI | MR | Zbl
[34] Overconvergent Hilbert modular forms, Am. J. Math., Volume 127 (2005) no. 4, pp. 735-783 | DOI | MR | Zbl
[35] Toroidal compactifications of PEL-type Kuga families, Algebra Number Theory, Volume 6 (2012) no. 5, pp. 885-966 | MR
[36] Compactifications of PEL-type Shimura varieties and Kuga families with ordinary loci, World Scientific, 2017 | Zbl
[37] -adic -functions for ordinary families of symplectic groups (2016) (To appear in J. Inst. Math. Jussieu)
[38] Commutative algebra, Mathematics Lecture Note Series, 56, Benjamin/Cummings Publishing Co., 1980, xv+313 pages | Zbl
[39] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970, viii+242 pages | MR | Zbl
[40] Holomorphic Forms Canonically Attached to Nearly Holomorphic Automorphic forms, Brandeis University (USA) (1992) (Ph. D. Thesis) | MR
[41] Lowest weight modules of and nearly holomorphic Siegel modular forms (2015) (https://arxiv.org/abs/1501.00524) | Zbl
[42] The special values of the zeta functions associated with cusp forms, Commun. Pure Appl. Math., Volume 29 (1976) no. 6, pp. 783-804 | DOI | MR | Zbl
[43] Invariant differential operators on Hermitian symmetric spaces, Ann. Math., Volume 132 (1990) no. 2, pp. 237-272 | DOI | MR | Zbl
[44] Euler products and Eisenstein series, Regional Conference Series in Mathematics, 93, American Mathematical Society, 1997, xx+259 pages | MR | Zbl
[45] Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, 82, American Mathematical Society, 2000, x+302 pages | MR | Zbl
[46] Stacks Project, https://stacks.math.columbia.edu, 2015
[47] Companion forms and classicality in the -case, Number theory (Ramanujan Mathematical Society Lecture Notes Series), Volume 15, Ramanujan Mathematical Society, 2011, pp. 119-141 | MR | Zbl
[48] On the rank of Selmer groups for elliptic curves over , Automorphic representations and -functions (Studies in Mathematics. Tata Institute of Fundamental Research), Volume 22, Tata Institute of Fundamental Research, 2013, pp. 651-680 | MR | Zbl
[49] Nearly overconvergent modular forms, Iwasawa theory 2012 (Contributions in Mathematical and Computational Sciences), Volume 7, Springer, 2014, pp. 401-441 | DOI | MR | Zbl
[50] On ordinary -adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573 | DOI | MR | Zbl
Cité par Sources :