A compactification of outer space which is an absolute retract
[Une compactification de l’outre-espace qui est un rétract absolu]
Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2395-2437.

Nous définissons une nouvelle compactification de l’outre espace CV N (la compactification de Pacman) qui est un rétract absolu et dont le bord est un Z-ensemble. À l’inverse, pour tout N4, la compactification classique CV N ¯, qui consiste en les actions très petites de F N sur des arbres réels, n’est pas localement 4-connexe. La compactification de Pacman est un éclatement de CV N ¯, obtenu en attribuant une orientation à tout arc à stabilisateur non trivial dans ces arbres réels.

We define a new compactification of outer space CV N (the Pacman compactification) which is an absolute retract, for which the boundary is a Z-set. The classical compactification CV N ¯ made of very small F N -actions on -trees, however, fails to be locally 4-connected as soon as N4. The Pacman compactification is a blow-up of CV N ¯, obtained by assigning an orientation to every arc with nontrivial stabilizer in the trees.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3298
Classification : 20E36
Keywords: Outer space, compactification, absolute retract, $Z$-set, $\protect \text{Out}(F_N)$
Mot clés : Outre espace, compactification, rétract absolu, $Z$-ensemble, $\protect \text{Out}(F_N)$

Bestvina, Mladen 1 ; Horbez, Camille 2

1 Department of Mathematics, University of Utah 155 South 1400 East, JWB 233 Salt Lake City, Utah 84112-0090 (USA)
2 Laboratoire de Mathématiques d’Orsay Univ. Paris-Sud, CNRS, Université Paris-Saclay 91405 Orsay (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_6_2395_0,
     author = {Bestvina, Mladen and Horbez, Camille},
     title = {A compactification of outer space which is an absolute retract},
     journal = {Annales de l'Institut Fourier},
     pages = {2395--2437},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {6},
     year = {2019},
     doi = {10.5802/aif.3298},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3298/}
}
TY  - JOUR
AU  - Bestvina, Mladen
AU  - Horbez, Camille
TI  - A compactification of outer space which is an absolute retract
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 2395
EP  - 2437
VL  - 69
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3298/
DO  - 10.5802/aif.3298
LA  - en
ID  - AIF_2019__69_6_2395_0
ER  - 
%0 Journal Article
%A Bestvina, Mladen
%A Horbez, Camille
%T A compactification of outer space which is an absolute retract
%J Annales de l'Institut Fourier
%D 2019
%P 2395-2437
%V 69
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3298/
%R 10.5802/aif.3298
%G en
%F AIF_2019__69_6_2395_0
Bestvina, Mladen; Horbez, Camille. A compactification of outer space which is an absolute retract. Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2395-2437. doi : 10.5802/aif.3298. https://aif.centre-mersenne.org/articles/10.5802/aif.3298/

[1] Bartels, Arthur Coarse flow spaces for relatively hyperbolic groups, Compos. Math., Volume 153 (2017) no. 4, pp. 745-779 | DOI | MR | Zbl

[2] Bartels, Arthur; Bestvina, Mladen The Farrell–Jones Conjecture for mapping class groups, Invent. Math., Volume 215 (2019) no. 2, pp. 651-712 | DOI | MR | Zbl

[3] Bartels, Arthur; Lück, Wolfgang; Reich, Holger The K-theoretic Farrell–Jones conjecture for hyperbolic groups, Invent. Math., Volume 172 (2008) no. 1, pp. 29-70 | DOI | MR | Zbl

[4] Bestvina, Mladen; Feighn, Mark Outer limits (1994) (preprint, available at http://andromeda.rutgers.edu/~feighn/papers/outer.pdf)

[5] Bestvina, Mladen; Guirardel, Vincent; Horbez, Camille Boundary amenability of Out(F N ) (2017) (https://arxiv.org/abs/1705.07017)

[6] Bestvina, Mladen; Mess, Geoffrey The boundary of negatively curved groups, J. Am. Math. Soc., Volume 4 (1991) no. 3, pp. 469-481 | DOI | MR | Zbl

[7] Borsuk, Karol Theory of retracts, Monografie Matematyczne, 44, Państwowe Wydawnictwo Naukowe, 1967, 251 pages | MR | Zbl

[8] Cohen, Marshall M.; Lustig, Martin Very small group actions on -trees and Dehn twist automorphisms, Topology, Volume 34 (1995) no. 3, pp. 575-617 | DOI | MR | Zbl

[9] Culler, Marc; Morgan, John W. Group actions on -trees, Proc. Lond. Math. Soc., Volume 55 (1987) no. 3, pp. 571-604 | DOI | Zbl

[10] Culler, Marc; Vogtmann, Karen Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986) no. 1, pp. 91-119 | DOI | MR | Zbl

[11] Culler, Marc; Vogtmann, Karen The boundary of outer space in rank two, Arboreal group theory (Berkeley, CA, 1988) (Mathematical Sciences Research Institute Publications), Volume 19 (1991), pp. 189-230 | DOI | MR | Zbl

[12] Dugundji, James Absolute neighborhood retracts and local connectedness in arbitrary metric spaces, Compos. Math., Volume 13 (1958), pp. 229-246 | MR | Zbl

[13] Eilenberg, Samuel; Steenrod, Norman Foundations of algebraic topology, Princeton University Press, 1952, xv+328 pages | DOI | Zbl

[14] Engelking, Ryszard Dimension theory, North-Holland, 1978 | Zbl

[15] Gaboriau, Damien; Levitt, Gilbert The rank of actions on -trees, Ann. Sci. Éc. Norm. Supér., Volume 28 (1995) no. 5, pp. 549-570 | DOI | MR | Zbl

[16] Guirardel, Vincent Approximations of stable actions on -trees, Comment. Math. Helv., Volume 73 (1998) no. 1, pp. 89-121 | DOI | MR | Zbl

[17] Guirardel, Vincent; Levitt, Gilbert Deformation spaces of trees, Groups Geom. Dyn., Volume 1 (2007) no. 2, pp. 135-181 | DOI | MR | Zbl

[18] Guirardel, Vincent; Levitt, Gilbert The outer space of a free product, Proc. Lond. Math. Soc., Volume 94 (2007) no. 3, pp. 695-714 | DOI | MR | Zbl

[19] Hatcher, Allen E. Measured lamination spaces for surfaces, from the topological viewpoint, Topology Appl., Volume 30 (1988) no. 1, pp. 63-88 | DOI | MR | Zbl

[20] Horbez, Camille Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, J. Topol., Volume 9 (2016) no. 2, pp. 401-450 | DOI | MR | Zbl

[21] Horbez, Camille Spectral rigidity for primitive elements of F N , J. Group Theory, Volume 19 (2016) no. 1, pp. 55-123 | MR | Zbl

[22] Horbez, Camille The boundary of the outer space of a free product, Isr. J. Math., Volume 221 (2017) no. 1, pp. 179-234 | DOI | MR | Zbl

[23] Hu, Sze-Tsen Theory of retracts, Wayne State University Press, 1965, 234 pages | Zbl

[24] Ivanov, Nikolai V. Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, 115, American Mathematical Society, 1992, xii+127 pages (Translated from the Russian by E. J. F. Primrose and revised by the author) | MR

[25] Kuratowski, Kasimir Sur les espaces localement connexes et péaniens en dimension n, Fundam. Math., Volume 24 (1935) no. 1, pp. 269-287 | DOI | Zbl

[26] Kuratowski, Kasimir Topology. Vol. II, Academic Press; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, 1968, xiv+608 pages (New edition, revised and augmented. Translated from the French by A. Kirkor)

[27] Levitt, Gilbert Graphs of actions on -trees, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 28-38 | DOI | MR | Zbl

[28] Levitt, Gilbert; Paulin, Frédéric Geometric group actions on trees, Am. J. Math., Volume 119 (1997) no. 1, pp. 83-102 | DOI | MR | Zbl

[29] Paulin, Frédéric Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math., Volume 94 (1988) no. 1, pp. 53-80 | DOI | Zbl

[30] Paulin, Frédéric The Gromov topology on -trees, Topology Appl., Volume 32 (1989) no. 3, pp. 197-221 | DOI | MR | Zbl

[31] Penner, Robert C. A construction of pseudo-Anosov homeomorphisms, Trans. Am. Math. Soc., Volume 310 (1988) no. 1, pp. 179-197 | DOI | MR | Zbl

[32] Serre, Jean-Pierre Arbres, amalgames, SL 2 , Astérisque, 46, Société Mathématique de France, 1977 | Zbl

[33] Shenitzer, Abe Decomposition of a group with a single defining relation into a free product, Proc. Am. Math. Soc., Volume 6 (1955), pp. 273-279 | DOI | MR | Zbl

[34] Skora, Richard K. Deformations of length functions in groups (1989) (preprint)

[35] Skora, Richard K. Splittings of surfaces, J. Am. Math. Soc., Volume 9 (1996) no. 2, pp. 605-616 | DOI | MR | Zbl

[36] Swarup, G. A. Decompositions of free groups, J. Pure Appl. Algebra, Volume 40 (1986) no. 1, pp. 99-102 | DOI | MR | Zbl

[37] Thurston, William P. On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Am. Math. Soc., Volume 19 (1988) no. 2, pp. 417-431 | DOI | MR | Zbl

Cité par Sources :