A quantum splitting principle and an application
[Un principe de décomposition quantique et une application]
Annales de l'Institut Fourier, Tome 69 (2019) no. 5, pp. 2067-2088.

Nous proposons un analogue du principe de décomposition en théorie de Gromov–Witten de genre zéro. Plus précisément, nous montrons comment réaliser la théorie de Gromov–Witten d’une variété X dans la théorie de la projectivisation d’un fibré vectoriel sur X. Nous donnons également une application.

We propose an analogy of splitting principle in genus-0 Gromov–Witten theory. More precisely, we show how the Gromov–Witten theory of a variety X can be embedded into the theory of the projectivization of a vector bundle over X. An application is also given.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3289
Classification : 14N35
Keywords: Gromov–Witten theory, splitting principle, projective bundle
Mot clés : théorie de Gromov–Witten, principe de décomposition, fibré projectif

Fan, Honglu 1

1 ETH Zürich Department of Mathematics Rämistrasse 101 Zürich, 8092 (Switzerland)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_5_2067_0,
     author = {Fan, Honglu},
     title = {A quantum splitting principle and an application},
     journal = {Annales de l'Institut Fourier},
     pages = {2067--2088},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {5},
     year = {2019},
     doi = {10.5802/aif.3289},
     zbl = {07034550},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3289/}
}
TY  - JOUR
AU  - Fan, Honglu
TI  - A quantum splitting principle and an application
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 2067
EP  - 2088
VL  - 69
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3289/
DO  - 10.5802/aif.3289
LA  - en
ID  - AIF_2019__69_5_2067_0
ER  - 
%0 Journal Article
%A Fan, Honglu
%T A quantum splitting principle and an application
%J Annales de l'Institut Fourier
%D 2019
%P 2067-2088
%V 69
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3289/
%R 10.5802/aif.3289
%G en
%F AIF_2019__69_5_2067_0
Fan, Honglu. A quantum splitting principle and an application. Annales de l'Institut Fourier, Tome 69 (2019) no. 5, pp. 2067-2088. doi : 10.5802/aif.3289. https://aif.centre-mersenne.org/articles/10.5802/aif.3289/

[1] Bernardara, Marcello A semiorthogonal decomposition for Brauer Severi schemes, Math. Nachr., Volume 282 (2009) no. 10, pp. 1406-1413 | DOI | MR | Zbl

[2] Brown, Jeffrey Gromov-Witten Invariants of Toric Fibrations (2009) (https://arxiv.org/abs/0901.1290)

[3] Coates, Tom; Givental, Alexander Quantum Riemann–Roch, Lefschetz and Serre, Ann. Math., Volume 165 (2007) no. 1, pp. 15-53 | MR | Zbl

[4] Fan, Honglu Chern classes and Gromov–Witten theory of projective bundles (2017) (https://arxiv.org/abs/1705.07421) | MR

[5] Fan, Honglu; Lee, Yuan-Pin On Gromov–Witten theory of projective bundles (2016) (https://arxiv.org/abs/1607.00740)

[6] Graber, Tom; Pandharipande, Rahul Localization of virtual classes, Invent. Math., Volume 135 (1999) no. 2, pp. 487-518 | DOI | MR | Zbl

[7] Grothendieck, Alexander Le groupe de Brauer I, II, III, Dix Exposés sur la Cohomologie des Schémas (Advanced Studies in Pure Mathematics), Volume 3, North-Holland, 1968, pp. 46-188 | MR

[8] Kim, Bumsig; Kresch, Andrew; Pantev, Tony Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra, Volume 179 (2003) no. 1, pp. 127-136 | MR | Zbl

[9] Kresch, Andrew Cycle groups for Artin stacks, Invent. Math., Volume 138 (1999) no. 3, pp. 495-536 | DOI | MR | Zbl

[10] Lai, Hsin-Hong Gromov–Witten invariants of blow-ups along submanifolds with convex normal bundles, Geom. Topol., Volume 13 (2007) no. 1, pp. 1-48 | MR | Zbl

[11] Lee, Yuan-Pin; Lin, Hui-Wen; Qu, Feng; Wang, Chin-Lung Invariance of quantum rings under ordinary flops III: A quantum splitting principle, Camb. J. Math., Volume 4 (2014) no. 3, pp. 333-401 | DOI | MR | Zbl

[12] Liu, Chiu-Chu M. Localization in Gromov–Witten theory and orbifold Gromov-Witten theory, Handbook of moduli. Volume II (Advanced Lectures in Mathematics (ALM)), Volume 25, International Press., 2013, pp. 353-425 | MR | Zbl

[13] Manolache, Cristina Virtual pull-backs, J. Algebr. Geom., Volume 21 (2012) no. 2, pp. 201-245 | MR | Zbl

[14] Mustata, Anca; Mustata, Andrei Gromov–Witten invariants for varieties with C* action (2015) (https://arxiv.org/abs/1505.01471)

[15] Ruan, Yongbin Surgery, quantum cohomology and birational geometry, Northern California symplectic geometry seminar (Advances in the Mathematical Sciences), Volume 196, American Mathematical Society, 1999, pp. 183-198 | MR | Zbl

Cité par Sources :