Nous proposons un analogue du principe de décomposition en théorie de Gromov–Witten de genre zéro. Plus précisément, nous montrons comment réaliser la théorie de Gromov–Witten d’une variété X dans la théorie de la projectivisation d’un fibré vectoriel sur X. Nous donnons également une application.
We propose an analogy of splitting principle in genus- Gromov–Witten theory. More precisely, we show how the Gromov–Witten theory of a variety can be embedded into the theory of the projectivization of a vector bundle over . An application is also given.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3289
Keywords: Gromov–Witten theory, splitting principle, projective bundle
Mot clés : théorie de Gromov–Witten, principe de décomposition, fibré projectif
Fan, Honglu 1
@article{AIF_2019__69_5_2067_0, author = {Fan, Honglu}, title = {A quantum splitting principle and an application}, journal = {Annales de l'Institut Fourier}, pages = {2067--2088}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {5}, year = {2019}, doi = {10.5802/aif.3289}, zbl = {07034550}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3289/} }
TY - JOUR AU - Fan, Honglu TI - A quantum splitting principle and an application JO - Annales de l'Institut Fourier PY - 2019 SP - 2067 EP - 2088 VL - 69 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3289/ DO - 10.5802/aif.3289 LA - en ID - AIF_2019__69_5_2067_0 ER -
%0 Journal Article %A Fan, Honglu %T A quantum splitting principle and an application %J Annales de l'Institut Fourier %D 2019 %P 2067-2088 %V 69 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3289/ %R 10.5802/aif.3289 %G en %F AIF_2019__69_5_2067_0
Fan, Honglu. A quantum splitting principle and an application. Annales de l'Institut Fourier, Tome 69 (2019) no. 5, pp. 2067-2088. doi : 10.5802/aif.3289. https://aif.centre-mersenne.org/articles/10.5802/aif.3289/
[1] A semiorthogonal decomposition for Brauer Severi schemes, Math. Nachr., Volume 282 (2009) no. 10, pp. 1406-1413 | DOI | MR | Zbl
[2] Gromov-Witten Invariants of Toric Fibrations (2009) (https://arxiv.org/abs/0901.1290)
[3] Quantum Riemann–Roch, Lefschetz and Serre, Ann. Math., Volume 165 (2007) no. 1, pp. 15-53 | MR | Zbl
[4] Chern classes and Gromov–Witten theory of projective bundles (2017) (https://arxiv.org/abs/1705.07421) | MR
[5] On Gromov–Witten theory of projective bundles (2016) (https://arxiv.org/abs/1607.00740)
[6] Localization of virtual classes, Invent. Math., Volume 135 (1999) no. 2, pp. 487-518 | DOI | MR | Zbl
[7] Le groupe de Brauer I, II, III, Dix Exposés sur la Cohomologie des Schémas (Advanced Studies in Pure Mathematics), Volume 3, North-Holland, 1968, pp. 46-188 | MR
[8] Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra, Volume 179 (2003) no. 1, pp. 127-136 | MR | Zbl
[9] Cycle groups for Artin stacks, Invent. Math., Volume 138 (1999) no. 3, pp. 495-536 | DOI | MR | Zbl
[10] Gromov–Witten invariants of blow-ups along submanifolds with convex normal bundles, Geom. Topol., Volume 13 (2007) no. 1, pp. 1-48 | MR | Zbl
[11] Invariance of quantum rings under ordinary flops III: A quantum splitting principle, Camb. J. Math., Volume 4 (2014) no. 3, pp. 333-401 | DOI | MR | Zbl
[12] Localization in Gromov–Witten theory and orbifold Gromov-Witten theory, Handbook of moduli. Volume II (Advanced Lectures in Mathematics (ALM)), Volume 25, International Press., 2013, pp. 353-425 | MR | Zbl
[13] Virtual pull-backs, J. Algebr. Geom., Volume 21 (2012) no. 2, pp. 201-245 | MR | Zbl
[14] Gromov–Witten invariants for varieties with C* action (2015) (https://arxiv.org/abs/1505.01471)
[15] Surgery, quantum cohomology and birational geometry, Northern California symplectic geometry seminar (Advances in the Mathematical Sciences), Volume 196, American Mathematical Society, 1999, pp. 183-198 | MR | Zbl
Cité par Sources :