En 1994, Long et Moody ont donné une construction sur les représentations des groupes de tresses, associant une représentation de à une représentation de . Dans cet article, on démontre que cette construction est fonctorielle et qu’elle peut s’étendre : elle est à l’origine d’endofoncteur, appelés endofoncteurs de Long–Moody, sur la catégorie des foncteurs ayant une construction de Quillen pour catégorie source et une catégorie de modules pour but. Ensuite, nous étudions l’effet des foncteurs de Long–Moody sur les foncteurs fortement polynomiaux : on démontre qu’ils augmentent de un le degré de très forte polynomialité.
In 1994, Long and Moody gave a construction on representations of braid groups which associates a representation of with a representation of . In this paper, we prove that this construction is functorial and can be extended: it inspires endofunctors, called Long–Moody functors, on the category of functors from Quillen’s bracket construction associated with the braid groupoid to a module category. Then we study the effect of Long–Moody functors on strong polynomial functors: we prove that they increase by one the degree of very strong polynomiality.
Accepté le :
Publié le :
Keywords: braid groups, functor categories, Long–Moody construction, polynomial functors.
Mot clés : groupes de tresses, catégories de foncteurs, construction de Long–Moody, foncteurs polynomiaux
Soulié, Arthur 1
@article{AIF_2019__69_4_1799_0, author = {Souli\'e, Arthur}, title = {The {Long{\textendash}Moody} construction and polynomial functors}, journal = {Annales de l'Institut Fourier}, pages = {1799--1856}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {4}, year = {2019}, doi = {10.5802/aif.3282}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3282/} }
TY - JOUR AU - Soulié, Arthur TI - The Long–Moody construction and polynomial functors JO - Annales de l'Institut Fourier PY - 2019 SP - 1799 EP - 1856 VL - 69 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3282/ DO - 10.5802/aif.3282 LA - en ID - AIF_2019__69_4_1799_0 ER -
%0 Journal Article %A Soulié, Arthur %T The Long–Moody construction and polynomial functors %J Annales de l'Institut Fourier %D 2019 %P 1799-1856 %V 69 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3282/ %R 10.5802/aif.3282 %G en %F AIF_2019__69_4_1799_0
Soulié, Arthur. The Long–Moody construction and polynomial functors. Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1799-1856. doi : 10.5802/aif.3282. https://aif.centre-mersenne.org/articles/10.5802/aif.3282/
[1] The Lawrence-Krammer representation, Topology and geometry of manifolds (Athens, GA, 2001) (Proceedings of Symposia in Pure Mathematics), Volume 71, American Mathematical Society, 2003, pp. 51-68 | DOI | MR | Zbl
[2] Homological representations of the Iwahori–Hecke algebra, Proceedings of the Casson Fest (Geometry and Topology Monographs), Volume 7 (2004), pp. 493-507 | DOI | MR | Zbl
[3] Generalized Long–Moody representations of braid groups, Commun. Contemp. Math., Volume 10 (2008) no. suppl. 1, pp. 1093-1102 | DOI | MR | Zbl
[4] Braids, links, and mapping class groups, 82, Princeton University Press; University of Tokyo Press, 1974, ix+228 pages (Annals of Mathematics Studies) | MR | Zbl
[5] Braids: a survey, Handbook of knot theory, Elsevier, 2005, pp. 19-103 | DOI | MR | Zbl
[6] Groups of cohomological dimension one, Lecture Notes in Mathematics, 245, Springer, 1972, v+99 pages | MR | Zbl
[7] Foncteurs faiblement polynomiaux, Int. Math. Res. Not. (2019) no. 2, pp. 321-391 | DOI | MR | Zbl
[8] On the groups . II. Methods of computation, Ann. Math., Volume 60 (1954), pp. 49-139 | DOI | MR | Zbl
[9] Higher algebraic -theory. II (after Daniel Quillen), Algebraic -theory (Proc. Conf., Northwestern Univ., Evanston, IL, 1976) (Lecture Notes in Mathematics), Volume 551, Springer, 1976, pp. 217-240 | MR | Zbl
[10] The classification of Wada-type representations of braid groups, J. Pure Appl. Algebra, Volume 217 (2013) no. 9, pp. 1754-1763 | DOI | MR | Zbl
[11] Homology stability for linear groups, Invent. Math., Volume 60 (1980) no. 3, pp. 269-295 | DOI | MR | Zbl
[12] Braid groups, Graduate Texts in Mathematics, 247, Springer, 2008, xii+340 pages (with the graphical assistance of Olivier Dodane) | DOI | MR | Zbl
[13] Homological representations of braid groups and KZ connections, J. Singul., Volume 5 (2012), pp. 94-108 | MR | Zbl
[14] Braid groups are linear, Ann. Math., Volume 155 (2002) no. 1, pp. 131-156 | DOI | MR | Zbl
[15] A topological approach to representations of the Iwahori–Hecke algebra, Int. J. Mod. Phys. A, Volume 5 (1990) no. 16, pp. 3213-3219 | DOI | MR | Zbl
[16] On the linear representation of braid groups, Trans. Am. Math. Soc., Volume 311 (1989) no. 2, pp. 535-560 | DOI | MR | Zbl
[17] On the linear representation of braid groups. II, Duke Math. J., Volume 59 (1989) no. 2, pp. 443-460 | DOI | MR
[18] Constructing representations of braid groups, Commun. Anal. Geom., Volume 2 (1994) no. 2, pp. 217-238 | DOI | MR | Zbl
[19] Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer, 1998, xii+314 pages | MR | Zbl
[20] On the representation theory of braid groups, Ann. Math. Blaise Pascal, Volume 20 (2013) no. 2, pp. 193-260 | DOI | MR | Zbl
[21] Homological stability for automorphism groups, Adv. Math., Volume 318 (2017), pp. 534-626 | DOI | MR | Zbl
[22] Generalized Long–Moody functors (2018) (https://arxiv.org/abs/1709.04278)
[23] A new class of representations of braid groups, Commun. Theor. Phys., Volume 26 (1996) no. 4, pp. 483-486 | DOI | MR
[24] Group invariants of links, Topology, Volume 31 (1992) no. 2, pp. 399-406 | DOI | MR | Zbl
[25] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1994, xiv+450 pages | DOI | MR | Zbl
Cité par Sources :