Finite groups with large Noether number are almost cyclic
[Les groupes finis ayant un grand nombre de Noether sont presque cycliques]
Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1739-1756.

Noether, Fleischmann et Fogarty ont montré que si le caractéristique du corps sous-jacent ne divise pas l’ordre |G| d’un groupe fini, alors l’anneau de pôlynomes invariants de G est engendré par des pôlynomes de degré au plus égal à |G|. Notons par β(G) le plus haut degré indispensable pour un tel système de générateurs. Cziszter et Domokos ont récemment décrit les groupes finis G tels que |G|/β(G) est au plus égal à 2. Nous démontrons une extension asymptotique de leur résultat, à savoir que |G|/β(G) est borné pour un groupe fini G si et seulement s’il admet un sous-groupe caractéristique cyclique d’indice borné. Durant la démonstration nous trouvons le résultat surprenant suivant : si S est un groupe fini simple de type de Lie ou l’un des groupes sporadiques alors on a β(S)|S| 39/40 . Nous posons égalament quelques questions motivées par nos résultats.

Noether, Fleischmann and Fogarty proved that if the characteristic of the underlying field does not divide the order |G| of a finite group G, then the polynomial invariants of G are generated by polynomials of degrees at most |G|. Let β(G) denote the largest indispensable degree in such generating sets. Cziszter and Domokos recently described finite groups G with |G|/β(G) at most 2. We prove an asymptotic extension of their result. Namely, |G|/β(G) is bounded for a finite group G if and only if G has a characteristic cyclic subgroup of bounded index. In the course of the proof we obtain the following surprising result. If S is a finite simple group of Lie type or a sporadic group then we have β(S)|S| 39/40 . We ask a number of questions motivated by our results.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3280
Classification : 13A50, 20D06, 20D08, 20D99
Keywords: polynomial invariants, Noether bound, simple groups of Lie type
Mot clés : polynomes invariants, majorant de Noether, groupes simples de type de Lie

Hegedűs, Pál 1 ; Maróti, Attila 2 ; Pyber, László 2

1 Department of Mathematics Central European University Nádor utca 9 H-1051 Budapest, Hungary
2 Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Reáltanoda utca 13-15 H-1053, Budapest, Hungary
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_4_1739_0,
     author = {Heged\'{u}s, P\'al and Mar\'oti, Attila and Pyber, L\'aszl\'o},
     title = {Finite groups with large {Noether} number are almost cyclic},
     journal = {Annales de l'Institut Fourier},
     pages = {1739--1756},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.5802/aif.3280},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3280/}
}
TY  - JOUR
AU  - Hegedűs, Pál
AU  - Maróti, Attila
AU  - Pyber, László
TI  - Finite groups with large Noether number are almost cyclic
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 1739
EP  - 1756
VL  - 69
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3280/
DO  - 10.5802/aif.3280
LA  - en
ID  - AIF_2019__69_4_1739_0
ER  - 
%0 Journal Article
%A Hegedűs, Pál
%A Maróti, Attila
%A Pyber, László
%T Finite groups with large Noether number are almost cyclic
%J Annales de l'Institut Fourier
%D 2019
%P 1739-1756
%V 69
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3280/
%R 10.5802/aif.3280
%G en
%F AIF_2019__69_4_1739_0
Hegedűs, Pál; Maróti, Attila; Pyber, László. Finite groups with large Noether number are almost cyclic. Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1739-1756. doi : 10.5802/aif.3280. https://aif.centre-mersenne.org/articles/10.5802/aif.3280/

[1] Conway, John H.; Curtis, Robert T.; Norton, Simon P.; Parker, Richard A.; Wilson, Robert A. Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray, Clarendon Press, 1985, xxxiv+252 pages | MR | Zbl

[2] Cziszter, Kálmán The Noether number of the non-abelian group of order 3p, Period. Math. Hung., Volume 68 (2014) no. 2, pp. 150-159 | DOI | MR | Zbl

[3] Cziszter, Kálmán; Domokos, Mátyás Groups with large Noether bound, Ann. Inst. Fourier, Volume 64 (2014) no. 3, pp. 909-944 | DOI | MR | Zbl

[4] Domokos, Mátyás; Hegedűs, Pál Noether’s bound for polynomial invariants of finite groups, Arch. Math., Volume 74 (2000) no. 3, pp. 161-167 | DOI | MR | Zbl

[5] Fleischmann, Peter The Noether bound in invariant theory of finite groups, Adv. Math., Volume 156 (2000) no. 1, pp. 23-32 | DOI | MR | Zbl

[6] Fogarty, John On Noether’s bound for polynomial invariants of a finite group, Electron. Res. Announc. Am. Math. Soc., Volume 7 (2001), pp. 5-7 | DOI | MR | Zbl

[7] Gorenstein, Daniel; Lyons, Richard; Solomon, Ronald The classification of the finite simple groups. Number 5. Part III. Chapters 1–6: The generic case, stages 1–3a, Mathematical Surveys and Monographs, 40, American Mathematical Society, 2002, xii+467 pages | MR | Zbl

[8] Huppert, Bertram Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften, 134, Springer, 1967, xii+793 pages | MR | Zbl

[9] Knop, Friedrich On Noether’s and Weyl’s bound in positive characteristic, Invariant theory in all characteristics (CRM Proceedings & Lecture Notes), Volume 35, American Mathematical Society, 2004, pp. 175-188 | DOI | MR | Zbl

[10] Noether, Emmy Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., Volume 77 (1915) no. 1, pp. 89-92 | DOI | MR | Zbl

[11] Olson, John E. A combinatorial problem on finite Abelian groups. I, J. Number Theory, Volume 1 (1969), pp. 8-10 | DOI | MR | Zbl

[12] Pálfy, Péter P. A polynomial bound for the orders of primitive solvable groups, J. Algebra, Volume 77 (1982) no. 1, pp. 127-137 | DOI | MR | Zbl

[13] Pawale, Vivek M. Invariants of semidirect product of cyclic groups, Brandeis University (USA) (1999), 60 pages https://search.proquest.com/docview/304494352 (Ph. D. Thesis) | MR

[14] Schmid, Barbara J. Finite groups and invariant theory, Topics in invariant theory (Paris, 1989/1990) (Lecture Notes in Mathematics), Volume 1478, Springer, 1991, pp. 35-66 | DOI | MR | Zbl

[15] Sezer, Müfit Sharpening the generalized Noether bound in the invariant theory of finite groups, J. Algebra, Volume 254 (2002) no. 2, pp. 252-263 | DOI | MR | Zbl

[16] Symonds, Peter On the Castelnuovo-Mumford regularity of rings of polynomial invariants, Ann. Math., Volume 174 (2011) no. 1, pp. 499-517 | DOI | MR | Zbl

[17] Thompson, John G. Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Am. Math. Soc., Volume 74 (1968), pp. 383-437 | DOI | MR | Zbl

[18] Wolf, Thomas R. Solvable and nilpotent subgroups of GL (n,q m ), Can. J. Math., Volume 34 (1982) no. 5, pp. 1097-1111 | DOI | MR | Zbl

Cité par Sources :