Noether, Fleischmann et Fogarty ont montré que si le caractéristique du corps sous-jacent ne divise pas l’ordre d’un groupe fini, alors l’anneau de pôlynomes invariants de est engendré par des pôlynomes de degré au plus égal à . Notons par le plus haut degré indispensable pour un tel système de générateurs. Cziszter et Domokos ont récemment décrit les groupes finis tels que est au plus égal à . Nous démontrons une extension asymptotique de leur résultat, à savoir que est borné pour un groupe fini si et seulement s’il admet un sous-groupe caractéristique cyclique d’indice borné. Durant la démonstration nous trouvons le résultat surprenant suivant : si est un groupe fini simple de type de Lie ou l’un des groupes sporadiques alors on a . Nous posons égalament quelques questions motivées par nos résultats.
Noether, Fleischmann and Fogarty proved that if the characteristic of the underlying field does not divide the order of a finite group , then the polynomial invariants of are generated by polynomials of degrees at most . Let denote the largest indispensable degree in such generating sets. Cziszter and Domokos recently described finite groups with at most . We prove an asymptotic extension of their result. Namely, is bounded for a finite group if and only if has a characteristic cyclic subgroup of bounded index. In the course of the proof we obtain the following surprising result. If is a finite simple group of Lie type or a sporadic group then we have . We ask a number of questions motivated by our results.
Accepté le :
Publié le :
Keywords: polynomial invariants, Noether bound, simple groups of Lie type
Mot clés : polynomes invariants, majorant de Noether, groupes simples de type de Lie
Hegedűs, Pál 1 ; Maróti, Attila 2 ; Pyber, László 2
@article{AIF_2019__69_4_1739_0, author = {Heged\'{u}s, P\'al and Mar\'oti, Attila and Pyber, L\'aszl\'o}, title = {Finite groups with large {Noether} number are almost cyclic}, journal = {Annales de l'Institut Fourier}, pages = {1739--1756}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {4}, year = {2019}, doi = {10.5802/aif.3280}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3280/} }
TY - JOUR AU - Hegedűs, Pál AU - Maróti, Attila AU - Pyber, László TI - Finite groups with large Noether number are almost cyclic JO - Annales de l'Institut Fourier PY - 2019 SP - 1739 EP - 1756 VL - 69 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3280/ DO - 10.5802/aif.3280 LA - en ID - AIF_2019__69_4_1739_0 ER -
%0 Journal Article %A Hegedűs, Pál %A Maróti, Attila %A Pyber, László %T Finite groups with large Noether number are almost cyclic %J Annales de l'Institut Fourier %D 2019 %P 1739-1756 %V 69 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3280/ %R 10.5802/aif.3280 %G en %F AIF_2019__69_4_1739_0
Hegedűs, Pál; Maróti, Attila; Pyber, László. Finite groups with large Noether number are almost cyclic. Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1739-1756. doi : 10.5802/aif.3280. https://aif.centre-mersenne.org/articles/10.5802/aif.3280/
[1] Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray, Clarendon Press, 1985, xxxiv+252 pages | MR | Zbl
[2] The Noether number of the non-abelian group of order , Period. Math. Hung., Volume 68 (2014) no. 2, pp. 150-159 | DOI | MR | Zbl
[3] Groups with large Noether bound, Ann. Inst. Fourier, Volume 64 (2014) no. 3, pp. 909-944 | DOI | MR | Zbl
[4] Noether’s bound for polynomial invariants of finite groups, Arch. Math., Volume 74 (2000) no. 3, pp. 161-167 | DOI | MR | Zbl
[5] The Noether bound in invariant theory of finite groups, Adv. Math., Volume 156 (2000) no. 1, pp. 23-32 | DOI | MR | Zbl
[6] On Noether’s bound for polynomial invariants of a finite group, Electron. Res. Announc. Am. Math. Soc., Volume 7 (2001), pp. 5-7 | DOI | MR | Zbl
[7] The classification of the finite simple groups. Number 5. Part III. Chapters 1–6: The generic case, stages 1–3a, Mathematical Surveys and Monographs, 40, American Mathematical Society, 2002, xii+467 pages | MR | Zbl
[8] Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften, 134, Springer, 1967, xii+793 pages | MR | Zbl
[9] On Noether’s and Weyl’s bound in positive characteristic, Invariant theory in all characteristics (CRM Proceedings & Lecture Notes), Volume 35, American Mathematical Society, 2004, pp. 175-188 | DOI | MR | Zbl
[10] Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., Volume 77 (1915) no. 1, pp. 89-92 | DOI | MR | Zbl
[11] A combinatorial problem on finite Abelian groups. I, J. Number Theory, Volume 1 (1969), pp. 8-10 | DOI | MR | Zbl
[12] A polynomial bound for the orders of primitive solvable groups, J. Algebra, Volume 77 (1982) no. 1, pp. 127-137 | DOI | MR | Zbl
[13] Invariants of semidirect product of cyclic groups, Brandeis University (USA) (1999), 60 pages https://search.proquest.com/docview/304494352 (Ph. D. Thesis) | MR
[14] Finite groups and invariant theory, Topics in invariant theory (Paris, 1989/1990) (Lecture Notes in Mathematics), Volume 1478, Springer, 1991, pp. 35-66 | DOI | MR | Zbl
[15] Sharpening the generalized Noether bound in the invariant theory of finite groups, J. Algebra, Volume 254 (2002) no. 2, pp. 252-263 | DOI | MR | Zbl
[16] On the Castelnuovo-Mumford regularity of rings of polynomial invariants, Ann. Math., Volume 174 (2011) no. 1, pp. 499-517 | DOI | MR | Zbl
[17] Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Am. Math. Soc., Volume 74 (1968), pp. 383-437 | DOI | MR | Zbl
[18] Solvable and nilpotent subgroups of , Can. J. Math., Volume 34 (1982) no. 5, pp. 1097-1111 | DOI | MR | Zbl
Cité par Sources :