Nous appliquons la construction du produit libre à diverses algèbres locales dans la théorie des champs quantiques algébriques.
Si l’on prend le produit libre d’une infinité d’inclusions modulaires unilatéral identiques avec endomorphisme canonique ergodique, on obtient une inclusion modulaire unilatéral avec endomorphisme canonique ergodique et commutant relatif trivial. D’autre part, si nous prenons des réseaux covariants de Möbius avec la propriété de trace, nous pouvons construire une inclusion d’algèbres libres de von Neumann avec un grand commutant relatif, en considérant soit une famille finie d’inclusions identiques, soit une famille infinie d’inclusions deux à deux inéquivalentes. Dans l’espace-temps bi-dimensionnel, nous construisons des triplets de Borchers avec un commutant relatif trivial en prenant des produits libres d’un nombre infini de triplets de Borchers identiques. Il est possible que les produits libres d’un nombre fini de triplets de Borchers soient associés au réseau de Haag–Kastler avec une matrice S non triviale et non asymptotiquement complète, mais la non-trivialité des algèbres à double cône reste une question ouverte.
We apply the free product construction to various local algebras in algebraic quantum field theory.
If we take the free product of infinitely many identical half-sided modular inclusions with ergodic canonical endomorphism, we obtain a half-sided modular inclusion with ergodic canonical endomorphism and trivial relative commutant. On the other hand, if we take Möbius covariant nets with trace class property, we are able to construct an inclusion of free product von Neumann algebras with large relative commutant, by considering either a finite family of identical inclusions or an infinite family of inequivalent inclusions. In two dimensional spacetime, we construct Borchers triples with trivial relative commutant by taking free products of infinitely many, identical Borchers triples. Free products of finitely many Borchers triples are possibly associated with Haag–Kastler net having S-matrix which is nontrivial and non asymptotically complete, yet the nontriviality of double cone algebras remains open.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3269
Keywords: Algebraic QFT, half-sided modular inclusions, conformal nets, free products
Mot clés : la théorie des champs quantiques algébriques, réseaux conformes inclusions modulaires unilatéral, produits libres
Longo, Roberto 1 ; Tanimoto, Yoh 2 ; Ueda, Yoshimichi 3
@article{AIF_2019__69_3_1229_0, author = {Longo, Roberto and Tanimoto, Yoh and Ueda, Yoshimichi}, title = {Free products in {AQFT}}, journal = {Annales de l'Institut Fourier}, pages = {1229--1258}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {3}, year = {2019}, doi = {10.5802/aif.3269}, zbl = {07067430}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3269/} }
TY - JOUR AU - Longo, Roberto AU - Tanimoto, Yoh AU - Ueda, Yoshimichi TI - Free products in AQFT JO - Annales de l'Institut Fourier PY - 2019 SP - 1229 EP - 1258 VL - 69 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3269/ DO - 10.5802/aif.3269 LA - en ID - AIF_2019__69_3_1229_0 ER -
%0 Journal Article %A Longo, Roberto %A Tanimoto, Yoh %A Ueda, Yoshimichi %T Free products in AQFT %J Annales de l'Institut Fourier %D 2019 %P 1229-1258 %V 69 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3269/ %R 10.5802/aif.3269 %G en %F AIF_2019__69_3_1229_0
Longo, Roberto; Tanimoto, Yoh; Ueda, Yoshimichi. Free products in AQFT. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1229-1258. doi : 10.5802/aif.3269. https://aif.centre-mersenne.org/articles/10.5802/aif.3269/
[1] Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories, Commun. Math. Phys., Volume 354 (2017) no. 3, pp. 913-956 (https://arxiv.org/abs/1608.02359) | DOI | MR | Zbl
[2] Extension of the structure theorem of Borchers and its application to half-sided modular inclusions, Rev. Math. Phys., Volume 17 (2005) no. 5, pp. 491-543 (https://arxiv.org/abs/math/0412061) | DOI | MR | Zbl
[3] Free product von Neumann algebras of type , Proc. Am. Math. Soc., Volume 123 (1995) no. 2, pp. 543-553 (http://www.ams.org/journals/proc/1995-123-02/S0002-9939-1995-1224611-7/S0002-9939-1995-1224611-7.pdf) | DOI | MR | Zbl
[4] Integrable QFT and Longo-Witten endomorphisms, Ann. Henri Poincaré, Volume 16 (2015) no. 2, pp. 569-608 (https://arxiv.org/abs/1305.2171) | DOI | MR | Zbl
[5] The CPT-theorem in two-dimensional theories of local observables, Commun. Math. Phys., Volume 143 (1992) no. 2, pp. 315-332 (http://projecteuclid.org/euclid.cmp/1104248958) | DOI | MR | Zbl
[6] Polarization-free generators and the -matrix, Commun. Math. Phys., Volume 219 (2001) no. 1, pp. 125-140 (https://arxiv.org/abs/hep-th/0003243) | DOI | MR | Zbl
[7] Scaling limits of integrable quantum field theories, Rev. Math. Phys., Volume 23 (2011) no. 10, pp. 1115-1156 (https://arxiv.org/abs/1105.2781) | DOI | MR | Zbl
[8] Product states for local algebras, Commun. Math. Phys., Volume 36 (1974), pp. 287-304 (http://projecteuclid.org/euclid.cmp/1103859773) | DOI | MR | Zbl
[9] The universal structure of local algebras, Commun. Math. Phys., Volume 111 (1987) no. 1, pp. 123-135 (http://projecteuclid.org/euclid.cmp/1104159470) | DOI | MR | Zbl
[10] Nuclear maps and modular structures. I. General properties, J. Funct. Anal., Volume 88 (1990) no. 2, pp. 233-250 | DOI | MR | Zbl
[11] Nuclearity and Thermal States in Conformal Field Theory, Commun. Math. Phys., Volume 270 (2007) no. 1, pp. 267-293 (https://arxiv.org/abs/math-ph/0603083) | DOI | MR | Zbl
[12] Modular nuclearity and localization, Ann. Henri Poincaré, Volume 5 (2004) no. 6, pp. 1065-1080 (https://arxiv.org/abs/math-ph/0402072) | DOI | MR | Zbl
[13] Thermal States in Conformal QFT. II, Commun. Math. Phys., Volume 315 (2012) no. 3, pp. 771-802 (https://arxiv.org/abs/1109.2064) | DOI | MR | Zbl
[14] The simplex of tracial quantum symmetric states, Stud. Math., Volume 225 (2014) no. 3, pp. 203-218 (https://arxiv.org/abs/1401.4692) | DOI | MR | Zbl
[15] Conformal nets, maximal temperature and models from free probability, J. Oper. Theory, Volume 45 (2001) no. 1, pp. 195-208 (https://arxiv.org/abs/math/9810003) | MR | Zbl
[16] KMS quantum symmetric states, J. Math. Phys., Volume 58 (2017) no. 1, 012103, 12 pages (Art. ID 012103, 12 pages, https://arxiv.org/abs/1609.01225) | MR | Zbl
[17] Factoriality and Connes’ invariant for free products of von Neumann algebras, J. Reine Angew. Math., Volume 450 (1994), pp. 159-180 (https://arxiv.org/abs/funct-an/9302005) | DOI | MR | Zbl
[18] On Borchers’ theorem, Lett. Math. Phys., Volume 46 (1998) no. 4, pp. 289-293 (https://dx.doi.org/10.1023/A:1007546507392) | DOI | MR | Zbl
[19] Quantum physics. A functional integral point of view, Springer, 1987, xxii+535 pages (https://books.google.com/books?id=VSjjBwAAQBAJ) | DOI | MR | Zbl
[20] Extensions of conformal nets and superselection structures, Commun. Math. Phys., Volume 192 (1998) no. 1, pp. 217-244 (https://arxiv.org/abs/hep-th/9703129) | DOI | MR | Zbl
[21] Asymptotic structure of free product von Neumann algebras, Math. Proc. Camb. Philos. Soc., Volume 161 (2016) no. 3, pp. 489-516 | DOI | MR | Zbl
[22] Modular theory and the reconstruction of four-dimensional quantum field theories, J. Math. Phys., Volume 42 (2001) no. 1, pp. 74-86 | DOI | MR | Zbl
[23] Polarization-free quantum fields and interaction, Lett. Math. Phys., Volume 64 (2003) no. 2, pp. 137-154 (https://arxiv.org/abs/hep-th/0303062) | DOI | MR | Zbl
[24] Construction of quantum field theories with factorizing -matrices, Commun. Math. Phys., Volume 277 (2008) no. 3, pp. 821-860 (https://arxiv.org/abs/math-ph/0601022) | DOI | MR | Zbl
[25] Algebraic constructive quantum field theory: Integrable models and deformation techniques, Advances in Algebraic Quantum Field Theory, Springer, 2015, pp. 397-448 (https://arxiv.org/abs/1503.03822) | DOI | MR | Zbl
[26] Localization in nets of standard spaces, Commun. Math. Phys., Volume 336 (2015) no. 1, pp. 27-61 | DOI | MR | Zbl
[27] Solution of the factorial Stone-Weierstrass conjecture. An application of the theory of standard split -inclusions, Invent. Math., Volume 76 (1984) no. 1, pp. 145-155 (https://eudml.org/doc/143121) | DOI | MR | Zbl
[28] Simple injective subfactors, Adv. Math., Volume 63 (1987) no. 2, pp. 152-171 | DOI | MR | Zbl
[29] Notes for a quantum index theorem, Commun. Math. Phys., Volume 222 (2001) no. 1, pp. 45-96 (https://arxiv.org/abs/math/0003082) | DOI | MR | Zbl
[30] Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, 125, Springer, 2003, xxii+518 pages (https://books.google.com/books?id=-4GyR1VlQz4C) | MR | Zbl
[31] Construction of Wedge-Local Nets of Observables Through Longo-Witten Endomorphisms, Commun. Math. Phys., Volume 314 (2012) no. 2, pp. 443-469 (https://arxiv.org/abs/1107.2629) | DOI | MR | Zbl
[32] Noninteraction of Waves in Two-dimensional Conformal Field Theory, Commun. Math. Phys., Volume 314 (2012) no. 2, pp. 419-441 (https://arxiv.org/abs/1107.2662) | DOI | MR | Zbl
[33] Construction of two-dimensional quantum field models through Longo-Witten endomorphisms, Forum Math. Sigma, Volume 2 (2014), e7, 31 pages (Art. ID e7, 31 pages, https://arxiv.org/abs/1301.6090) | DOI | MR | Zbl
[34] Factoriality, type classification and fullness for free product von Neumann algebras, Adv. Math., Volume 228 (2011) no. 5, pp. 2647-2671 | DOI | MR | Zbl
[35] On type factors arising as free products, Math. Res. Lett., Volume 18 (2011) no. 5, pp. 909-920 | DOI | MR | Zbl
[36] Symmetries of some reduced free product -algebras, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983) (Lecture Notes in Mathematics), Volume 1132, Springer, 1985, pp. 556-588 | DOI | MR | Zbl
[37] Free random variables, CRM Monograph Series, 1, American Mathematical Society, 1992, vi+70 pages (https://books.google.com/books?id=r7BJAwAAQBAJ) | MR | Zbl
[38] Half-sided modular inclusions of von-Neumann-algebras, Commun. Math. Phys., Volume 157 (1993) no. 1, pp. 83-92 (https://projecteuclid.org/euclid.cmp/1104253848) | MR | Zbl
[39] Modular intersections of von Neumann algebras in quantum field theory, Commun. Math. Phys., Volume 193 (1998) no. 2, pp. 269-285 (https://www-sfb288.math.tu-berlin.de/pub/Preprints/preprint193.ps.gz) | DOI | MR | Zbl
Cité par Sources :