Nous donnons une formule conjecturelle pour des faisceaux coherents de support des variétés conormales dans le fibré cotangent de la Grassmannienne, tels que leur classe de -théorie équivariante est donnée par la fonction de partition d’un modèle de boucles intégrable, et que de plus leur image dans la -théorie d’un point est solution de l’équation de Knizhnik–Zamolodchikov quantique de niveau . Nous démontrons ces résultats dans le cas où la Lagrangienne est lisse (donc le fibré conormal d’une sous-Grassmannienne). Pour pousser en avant vers un point, ou de manière équivalente vers son affinisation, nous dégénérons simultanément la Lagrangienne et son faisceau (sur l’affinisation) ; le faisceau dégénère en une somme directe de modules cycliques sur les composantes géométriques, qui sont en bijection avec des partitions planes, ce qui donne une interprétation géométrique à la correspondance de Razumov–Stroganov satisfaite par le modèle de boucles.
We give a conjectural formula for sheaves supported on (irreducible) conormal varieties inside the cotangent bundle of the Grassmannian, such that their equivariant -class is given by the partition function of an integrable loop model, and furthermore their -theoretic pushforward to a point is a solution of the level quantum Knizhnik–Zamolodchikov equation. We prove these results in the case that the Lagrangian is smooth (hence is the conormal bundle to a subGrassmannian). To compute the pushforward to a point, or equivalently to the affinization, we simultaneously degenerate the Lagrangian and sheaf (over the affinization); the sheaf degenerates to a direct sum of cyclic modules over the geometric components, which are in bijection with plane partitions, giving a geometric interpretation to the Razumov–Stroganov correspondence satisfied by the loop model.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3266
Keywords: Quantum Knizhnik–Zamolodchikov equation, equivariant $K$-theory, cotangent bundle of the Grassmannian, loop model
Mot clés : Equation de Knizhnik–Zamolodchikov quantique, $K$-théorie équivariante, fibré cotangent de la Grassmannienne, modèle de boucles
Knutson, Allen 1 ; Zinn-Justin, Paul 2
@article{AIF_2019__69_3_1087_0, author = {Knutson, Allen and Zinn-Justin, Paul}, title = {Grassmann{\textendash}Grassmann conormal varieties, integrability, and plane partitions}, journal = {Annales de l'Institut Fourier}, pages = {1087--1145}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {3}, year = {2019}, doi = {10.5802/aif.3266}, zbl = {07067427}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3266/} }
TY - JOUR AU - Knutson, Allen AU - Zinn-Justin, Paul TI - Grassmann–Grassmann conormal varieties, integrability, and plane partitions JO - Annales de l'Institut Fourier PY - 2019 SP - 1087 EP - 1145 VL - 69 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3266/ DO - 10.5802/aif.3266 LA - en ID - AIF_2019__69_3_1087_0 ER -
%0 Journal Article %A Knutson, Allen %A Zinn-Justin, Paul %T Grassmann–Grassmann conormal varieties, integrability, and plane partitions %J Annales de l'Institut Fourier %D 2019 %P 1087-1145 %V 69 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3266/ %R 10.5802/aif.3266 %G en %F AIF_2019__69_3_1087_0
Knutson, Allen; Zinn-Justin, Paul. Grassmann–Grassmann conormal varieties, integrability, and plane partitions. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1087-1145. doi : 10.5802/aif.3266. https://aif.centre-mersenne.org/articles/10.5802/aif.3266/
[1] Lectures on the geometry of flag varieties, Topics in cohomological studies of algebraic varieties (Trends in Mathematics), Birkhäuser, 2005, pp. 33-85 https://www-fourier.ujf-grenoble.fr/~mbrion/lecturesrev.pdf | DOI | MR
[2] Proof of the Razumov–Stroganov conjecture, J. Comb. Theory, Ser. A, Volume 118 (2011) no. 5, pp. 1549-1574 | DOI | MR | Zbl
[3] Totally symmetric self-complementary plane partitions and the quantum Knizhnik–Zamolodchikov equation: a conjecture, J. Stat. Mech. Theory Exp. (2006) no. 9, P09008, 14 pages (Art. ID P09008, 14 pages) | MR
[4] Around the Razumov–Stroganov conjecture: proof of a multi-parameter sum rule, Electron. J. Comb., Volume 12 (2005), 6, 27 pages http://www.combinatorics.org/volume_12/abstracts/v12i1r6.html (Art. ID 6, 27 pages) | MR | Zbl
[5] Quantum Knizhnik–Zamolodchikov equation, generalized Razumov–Stroganov sum rules and extended Joseph polynomials, J. Phys. A, Math. Gen., Volume 38 (2005) no. 48, p. L815-L822 | DOI | MR | Zbl
[6] Quantum Knizhnik–Zamolodchikov equation, Totally Symmetric Self-Complementary Plane Partitions and Alternating Sign Matrices, Theor. Math. Phys., Volume 154 (2008) no. 3, pp. 331-348 | DOI | Zbl
[7] A bijection between classes of fully packed loops and plane partitions, Electron. J. Comb., Volume 11 (2004) no. 1, 64, 11 pages (Art. ID 64, 11 pages) | MR | Zbl
[8] Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer, 1995, xvi+785 pages | DOI | MR | Zbl
[9] Binomial ideals, Duke Math. J., Volume 84 (1996) no. 1, pp. 1-45 | DOI | MR | Zbl
[10] Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, 1993, xii+157 pages (The William H. Roever Lectures in Geometry) | DOI | MR | Zbl
[11] Macaulay2, a software system for research in algebraic geometry (Available at http://www.math.uiuc.edu/Macaulay2/)
[12] Subrepresentations in the polynomial representation of the double affine Hecke algebra of type at , Int. Math. Res. Not., Volume 2005 (2005) no. 28, pp. 1717-1742 | DOI | MR | Zbl
[13] Gröbner geometry of Schubert polynomials, Ann. Math., Volume 161 (2005) no. 3, pp. 1245-1318 | MR | Zbl
[14] Four positive formulae for type quiver polynomials, Invent. Math., Volume 166 (2006) no. 2, pp. 229-325 | DOI | MR | Zbl
[15] Gröbner geometry of vertex decompositions and of flagged tableaux, J. Reine Angew. Math., Volume 630 (2009), pp. 1-31 | DOI | MR | Zbl
[16] The Brauer loop scheme and orbital varieties, J. Geom. Phys., Volume 78 (2014), pp. 80-110 | DOI | MR | Zbl
[17] Quantum groups and quantum cohomology (2012) (https://arxiv.org/abs/1211.1287) | Zbl
[18] Combinatorial commutative algebra, Graduate Texts in Mathematics, 227, Springer, 2005, xiv+417 pages | MR | Zbl
[19] Quantum incompressibility and Razumov Stroganov type conjectures, Ann. Henri Poincaré, Volume 7 (2006) no. 3, pp. 397-421 | DOI | MR | Zbl
[20] Combinatorial nature of the ground-state vector of the loop model, Teor. Mat. Fiz., Volume 138 (2004) no. 3, pp. 395-400 | DOI | MR | Zbl
[21] Trigonometric weight functions as K-theoretic stable envelope maps for the cotangent bundle of a flag variety (2014) (https://arxiv.org/abs/1411.0478) | Zbl
[22] Extended Joseph polynomials, quantized conformal blocks, and a -Selberg type integral, J. Geom. Phys., Volume 62 (2012) no. 11, pp. 2188-2207 | DOI | MR | Zbl
[23] Equivariant -theory and equivariant cohomology, Math. Z., Volume 243 (2003) no. 3, pp. 423-448 (With an appendix by Allen Knutson and Rosu) | DOI | MR | Zbl
[24] Borel orbits of in , Ph. D. Thesis, University of California (USA) (2009) (http://search.proquest.com//docview/304845738)
[25] Restriction formula for stable basis of Springer resolution (2015) (https://arxiv.org/abs/1501.04214) | Zbl
[26] Higher algebraic -theory of group actions with finite stabilizers, Duke Math. J., Volume 113 (2002) no. 1, pp. 1-55 | DOI | MR | Zbl
[27] Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, 149, Cambridge University Press, 2003, xiv+371 pages | DOI | MR | Zbl
[28] A large dihedral symmetry of the set of alternating sign matrices, Electron. J. Comb., Volume 7 (2000), 37, 13 pages (Art. ID 37, 13 pages) | MR | Zbl
[29] When is a Schubert variety Gorenstein?, Adv. Math., Volume 207 (2006) no. 1, pp. 205-220 | DOI | MR | Zbl
[30] Proof of the Razumov–Stroganov conjecture for some infinite families of link patterns, Electron. J. Comb., Volume 13 (2006) no. 1, 110, 15 pages (Art. ID 110, 15 pages) | MR | Zbl
[31] Six-vertex, loop and tiling models: integrability and combinatorics, Lambert Academic Publishing, 2009 http://www.lpthe.jussieu.fr/~pzinn/publi/hdr.pdf (Habilitation thesis)
[32] Quiver varieties and the quantum Knizhnik–Zamolodchikov equation, Theor. Math. Phys., Volume 185 (2015) no. 3, pp. 1741-1758 | DOI | MR | Zbl
[33] On the counting of Fully Packed Loop configurations: some new conjectures, Electron. J. Comb., Volume 11 (2004) no. 1, 13, 15 pages http://www.combinatorics.org/volume_11/abstracts/v11i1r13.html (Art. ID 13, 15 pages) | MR | Zbl
Cité par Sources :