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GRASSMANN–GRASSMANN CONORMAL VARIETIES,
INTEGRABILITY, AND PLANE PARTITIONS

by Allen KNUTSON & Paul ZINN-JUSTIN (*)

Abstract. — We give a conjectural formula for sheaves supported on (irre-
ducible) conormal varieties inside the cotangent bundle of the Grassmannian, such
that their equivariant K-class is given by the partition function of an integrable
loop model, and furthermore their K-theoretic pushforward to a point is a solu-
tion of the level 1 quantum Knizhnik–Zamolodchikov equation. We prove these
results in the case that the Lagrangian is smooth (hence is the conormal bundle
to a subGrassmannian). To compute the pushforward to a point, or equivalently
to the affinization, we simultaneously degenerate the Lagrangian and sheaf (over
the affinization); the sheaf degenerates to a direct sum of cyclic modules over the
geometric components, which are in bijection with plane partitions, giving a geo-
metric interpretation to the Razumov–Stroganov correspondence satisfied by the
loop model.

Résumé. — Nous donnons une formule conjecturelle pour des faisceaux cohe-
rents de support des variétés conormales dans le fibré cotangent de la Grassman-
nienne, tels que leur classe de K-théorie équivariante est donnée par la fonction
de partition d’un modèle de boucles intégrable, et que de plus leur image dans la
K-théorie d’un point est solution de l’équation de Knizhnik–Zamolodchikov quan-
tique de niveau 1. Nous démontrons ces résultats dans le cas où la Lagrangienne est
lisse (donc le fibré conormal d’une sous-Grassmannienne). Pour pousser en avant
vers un point, ou de manière équivalente vers son affinisation, nous dégénérons
simultanément la Lagrangienne et son faisceau (sur l’affinisation); le faisceau dégé-
nère en une somme directe de modules cycliques sur les composantes géométriques,
qui sont en bijection avec des partitions planes, ce qui donne une interprétation
géométrique à la correspondance de Razumov–Stroganov satisfaite par le modèle
de boucles.

Keywords: Quantum Knizhnik–Zamolodchikov equation, equivariant K-theory, cotan-
gent bundle of the Grassmannian, loop model.
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1. Introduction

In [17] solutions to the rational Yang–Baxter equation (YBE) were con-
structed using cohomology classes living on “symplectic resolutions”, in
particular on the cotangent bundles of Grassmannians (the main symplec-
tic resolutions considered here). Each class has a geometric origin, as the
(usually reducible) singular support of a certain D-module on the Grass-
mannian. In this paper we begin the study of a geometric origin for the
corresponding trigonometric YBE, constructing sheaves on these cotangent
bundles whose equivariantK-classes (once pushed to a point) we conjecture
to satisfy the (trigonometric) quantum Knizhnik–Zamolodchikov equation.
For each Schubert variety Xr ⊆ Gr(n,N), we define a sheaf σr sup-

ported on its conormal variety CXr ⊆ T ∗Gr(n,N) (definitions appearing
in Section 1.2). We give a conjectural formula for its equivariant K-theory
class as a rectangular-domain partition function of a “quantum integrable”
model. The sheaf cohomology groups of σr are modules over the affinization
µ(CXr); conjecturally, all cohomology vanishes unless the affinization map
is birational, not dropping dimension. As the paper’s title indicates, in this
paper we focus attention on (and prove the conjectures in) the case that
Xr is a subGrassmannian (the only time Xr is smooth); the affinization
µ(CXr) of CXr is then an A3 quiver cycle.

The Stanley–Reisner ring of a simplicial complex has a basis given by
monomials, and a “shelling” of the simplicial complex gives a partitioning
of the monomials into orthants, allowing one to count those monomials
without inclusion-exclusion. We do something closely analogous with a de-
generation of (µ(CXr), µ∗σr), giving a partitioning into cones of a C-basis
of the module µ∗σr = H0(CXr; σr). Geometrically, this degenerates the
base µ(CXr) of the sheaf µ∗σr to a highly reducible scheme with very
simple components, each bearing one summand of the degenerate sheaf
(though our shelling statement is stronger).
One key difference between the results of [17, 21] and ours is that we work

directly with sheaves on T ∗Gr(n,N), not just K-classes thereof, which
is a sort of positivity statement; in the subGrassmannian case we get a
similar positivity on their pushforwards from the vanishing of their higher
cohomology (Proposition 4.2). Another difference is that we work with
(sheaves supported on) individual conormal varieties, whereas [17, 21] work
with the stable basis (supported on unions). Their basis is positive upper
triangular w.r.t. ours, the change of basis being given by maximal parabolic
Kazhdan–Lusztig polynomials (the same change of basis which relates the
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corresponding quantum integrable models: the six-vertex model for the
stable basis and the Temperley–Lieb loop model for ours).
We now describe in more detail our main results.

1.1. Various combinatorial gadgets

We shall use interchangeably three sets in bijection:

• Subsets of [N ] := {1, . . . , N} of cardinality n;
• Young diagrams fitting inside an (N − n)× n rectangle;
• Link patterns of size N with at most min(n,N −n) chords, that is,
pairings of N vertices on a line (some possibly being left unpaired),
in such a way that there are at most min(n,N −n) pairings, drawn
as chords, and that the chords, as well as half-infinite lines coming
out of unpaired vertices, may be drawn in a half-plane without any
crossings.

We call the set of any of these objects
([N ]
n

)
, and now describe the bijections.

Given a Young diagram, we associate to it a subset as follows: if we
number from 1 toN the boundary edges of the Young diagram from bottom
left to top right, then the subset r = {r1, . . . , rn} consists of all steps to
the right. We always order increasingly elements of the subset, that is we
always have ri < ri+1, i = 1, . . . , n−1. We shall denote by r̄ its complement
in {1, . . . , N}, which therefore consists of all steps up.

Given a link pattern with at most min(n,N −n) chords, then the subset
consists of all “closings” of chords (vertices paired to another vertex to the
left, where the numbering is from left to right), completed to cardinality n
by including unpaired vertices starting from the left.
Finally, we also provide the bijection from Young diagrams to link pat-

terns, since it will be useful later: rotate the Young diagram 45 degrees
clockwise, then fill the boxes of its complement with the picture ; the
connectivity of the lines emerging at the top reproduces the link pattern.

TOME 69 (2019), FASCICULE 3
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On an example,

(1.1) r = {1, 4, 6, 7, 10} ∈
(

[11]
5

)
:

N − n

n

→ =

Also, denote by |r| the number of boxes of r; equivalently, |r| =
n(N − n)−∑n

i=1(ri − i).
We endow

([N ]
n

)
with the following order relation: ⊆ denotes inclusion of

Young diagrams, or equivalently of the corresponding Schubert varieties.
An example of the poset structure is shown in Figure 1.1.

3 4

4
2

2 3
4

1

3
1

1 2

Figure 1.1. The poset structure for
([4]

2
)
.
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When this order is reformulated in terms of subsets, it corresponds to
pointwise greater or equal; we shall therefore denote the opposite order 6,
hoping this does not create any confusion:

r ⊆ s ⇔ s 6 r ⇔ si 6 ri, i = 1, . . . , n

A Completely Packed Loop configuration (or CPL, in short) is an as-
signment of the two possible plaquettes and to the faces of a
n×N square grid, e.g., for N = 4, n = 2, one CPL is

n

N

We say that a CPL has top-connectivity given by r ∈
([N ]
n

)
iff when

following the paths made by the (blue) lines, the connectivity of the external
edge midpoints obeys the following rules:

• Denoting (l,r,b,t) for a midpoint situated on the left, right, bottom,
or top sides, the allowed connectivities are (b,l), (b,r), (b,t), (l,t),
(t,t).

• The connectivity of the N midpoints across the top edge (ignoring
connectivities outside the top side, i.e., declaring a midpoint con-
nected to the left or bottom to be unpaired) reproduces the link
pattern r.

Note that these conditions imply that if r has m chords, then a CPL with
top-connectivity r has m pairings (t,t), n−m (t,l) and N − n−m (b,t).

A CPL may have paths which close onto themselves; we call them loops,
and their number is denoted |loops|.

For example, the CPL above has top-connectivity , and
|loops| = 1.

1.2. The geometric setup

Given two integers n and N such that 0 6 n 6 N , consider the Grass-
mannian Gr(n,N) = {V 6 CN : dimV = n} and its cotangent bundle
T ∗Gr(n,N). GL(N) acts on each of these, as do its Borel subgroups B±
and diagonal matrices T0 = B+ ∩ B−. An additional circle C× acts on

TOME 69 (2019), FASCICULE 3



1092 Allen KNUTSON & Paul ZINN-JUSTIN

T ∗Gr(n,N) by scaling of the cotangent spaces. Let T := T0 × C×, with
representation rings KT0 = Z[z±1 , . . . , z±N ],KC× = Z[t±].
The T0-fixed points in Gr(n,N) (or equivalently, T -fixed points in

T ∗Gr(n,N), viewing Gr(n,N) as its zero section) are coordinate subspaces,
thereby labeled by subsets r ∈

([N ]
n

)
. Their B−-orbits Xr

o are called Schu-
bert cells, with conormal bundles denoted

CXr
◦ := {(x,~v) : x ∈ Xr

◦ , ~v ∈ T ∗x Gr(n,N), ~v ⊥ Tx(Xr
◦)} ⊆ T ∗Gr(n,N).

Their closures Xr := Xr
o and CXr := CXr

o we call Schubert varieties and
conormal Schubert varieties, respectively.
We shall consider certain T -equivariant coherent sheaves on T ∗Gr(n,N),

and their classes in the equivariant K-theory ring KT (T ∗Gr(n,N)) ∼=
KT (Gr(n,N)) ∼= KT0(Gr(n,N))⊗Z[t±]. For r ∈

([N ]
n

)
, define the restriction

map

|r : Z[y±1 , . . . , y±n , z±1 , . . . , z±N ]→ KT0

f 7→ f |r := f(zr1 , . . . , zrn , z1, . . . , zN )

in which case

KT0(Gr(n,N)) ∼= Z[y±1 , . . . , y±n , z±1 , . . . , z±N ]Sn
/ ⋂

r∈([N]
n )

ker (|r)

where the Sn permutes the y Laurent variables, which are the Chern roots
of the tautological n-plane bundle on the Grassmannian. Thus to describe
a class, it suffices to give a Laurent polynomial and check its symmetry in
the ys.

Conjecture 1.1. — Assume N even. There exists a T -equivariant co-
herent rank 1 sheaf σr supported on CXr, defined in Section 3.3, whose
class in KT (T ∗Gr(n,N)) is represented by

(1.2) [σr] = mr

n∏

i,j=1
a(yi/yj)−1

∑

CPLs with
top-connectivity r

τ |loops|
n∏

i=1

N∏

j=1





a(yi/zj)

b(yi/zj)

where the product is over rows i and columns j of the grid (the choice of
a or b depending on the type of plaquette at (i, j)), the various plaquette

ANNALES DE L’INSTITUT FOURIER
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weights are given by

a(x) = t−1/2x1/2 − t1/2x−1/2

b(x) = x−1/2 − x1/2

τ = t−1/2 + t1/2,

and mr is a monomial (with unit coefficient) in the z1/2
i and t1/2.

The r.h.s. of (1.2) may not seem well-defined in KT (T ∗Gr(n,N)) due to
the presence of a denominator, but we show in Remark 2.4 that it is. The
symmetry in the ys will also be proven, in Lemma 2.2. Lastly, note that
mr can be absorbed into [σr], up to issues with square roots of the zi, by
tensoring σr with a trivial line bundle; one could even dispense with the
“N even” hypothesis by allowing square roots of the Chern roots yi as well.
In the sections to come we won’t be concerned with the sheaves σr so

often as their sheaf cohomology groups, which we conjecture to all vanish
unless the map from CXr to its affinization doesn’t drop dimension. In
Section 3.4 this geometric condition will be shown equivalent to a Dyck
path condition on r, and the vanishing conjecture established for H0 when
Xr is Gorenstein.

1.3. Polynomial solution of the level 1 quantum
Knizhnik–Zamolodchikov equation

We now restrict to the case N = 2n. This allows for the possibility to
have full link patterns, that is, link patterns for which every vertex is paired.
We denote the set of full link patterns by LP (N); from the point of view
of Young diagrams, it is exactly the subset of Young diagrams which are
inside the “staircase” diagram := {2i, 1 6 i 6 n}. Its cardinality is the
Catalan number cn = (2n)!

n!(n+1)! .
We first recall the following

Theorem 1.2 ([6, 12, 19]). — The space of polynomials in N variables
z1, . . . , zN of degree at most n(n− 1) satisfying the wheel condition

{
P ∈ C(t1/2)[z1, . . . , zN ] : P (. . . , z, . . . , tz, . . . , t2z, . . .) = 0

}

is of dimension cn over C(t1/2). It has a basis indexed by link patterns
(Ψr)r∈LP (N) given by the dual basis condition

Ψr

(
zi =

{
t−1/2 i ∈ s̄
t1/2 i ∈ s

, i = 1, . . . , N
)

= δr,sτ
|r|, r, s ∈ LP (N)

TOME 69 (2019), FASCICULE 3



1094 Allen KNUTSON & Paul ZINN-JUSTIN

where τ = t1/2 + t−1/2.

The Ψr are homogeneous of degree n(n − 1). They have remarkable
properties, many of which follow from the (level 1) quantum Knizhnik–
Zamolodchikov (qKZ) equation. Given a vector Ψ with entries Ψr in a
basis indexed by LP (N), the level 1 qKZ system is:

Ψ(z1, . . . , zi+1, zi, . . . , zN ) = Ři(zi/zi+1)Ψ(z1, . . . , zi, zi+1, . . . , zN ),

Ψ(z2, . . . , zN , t
3z1) = (−t1/2)3(n−1)ρΨ(z1, . . . , zN )

with i = 1, . . . , N − 1, where Ři(z) = z−t+t1/2(1−z)ei
1−t z , ei is the Temperley–

Lieb operator acting on link patterns by connecting i and i+ 1 (with

a weight of τ if they were already connected),(1) and ρ is the rotation
operator that shifts cyclically to the right link patterns. We shall not make
use of this system of equations in the present work and refer to [5, 31] for
details.
We claim the following

Conjecture 1.3. — The pushforward of σr to a point in localized T -
equivariant K-theory is equal, up to normalization, to Ψr:

π∗[σr] =
{

0 r 6⊆
(1− t)n(n−1)m̃r

∏
16i<j6N (1− t zi/zj)−1 Ψr r ⊆

Here m̃r is another monomial in the z1/2
i , related to the previous one by

m̃r =
∏N
i=1 z

n/2+1−i
i mr.

We will prove these conjectures in a forthcoming paper.
In fact, it would not be difficult to show that Conjecture 1.1 implies

Conjecture 1.3 (the first equation of the qKZ system is naturally satisfied
by π∗[σr] up to normalization of the R-matrix, and together with the initial
condition of π∗[σ∅], it determines them uniquely).

The factor
∏

16i<j6N (1− t zi/zj) can be naturally interpreted in terms
of the weights of the space of strict upper triangular matrices Mat<(N);
see Section 3.2 for details.
The limit t → 1 corresponds on the integrable side to the “rational”

limit from the quantum KZ equation to the difference KZ equation; on
the geometric side, to the limit from K-theory to cohomology, where some
results similar to Conjecture 1.3 are known [5, 22, 32].

(1)Note that if we similarly identify the identity with , then Ři is nothing but the
combination of plaquettes occurring in Conjecture 1.1, up to normalization. See also
Section 2.

ANNALES DE L’INSTITUT FOURIER
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1.4. Fully Packed Loops and the Razumov–Stroganov
correspondence

A Fully Packed Loop configuration (in short, FPL) is an assignment of
two possible states (empty, occupied) to the edges of a n × n square grid
such that every vertex is traversed by exactly one path, and the external
edges are alternatingly occupied and empty (declaring that the topmost
left external edge is occupied); e.g., for n = 4,

Numbering the occupied external edges clockwise from the leftmost top
one, we can associate to an FPL the connectivity of these external edges
encoded as a (full) link pattern; in the present example, we find

.

(Actually the choice of the starting point for the labelling of the external
edges is irrelevant, at least for enumerative purposes, since Wieland [28]
constructs a bijection of FPLs which rotates cyclically the connectivity of
the external edges.) Denote by FPLr the set of FPLs with connectivity
given by link pattern r.
One way to see the connection with what precedes is

Conjecture 1.4. — Ψr can be decomposed as a sum of products of
the form

Ψr =
∑

f∈FPLr

n(n−1)∏

α=1

t−rf,α/2zjf,α − trf,α/2zif,α
t−1/2 − t1/2

where rf,α ∈ {1, 2}.

This conjecture is formulated somewhat implicitly in [3, §4].

TOME 69 (2019), FASCICULE 3
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Specializing the zi to 1 and τ to 1 (i.e., t to a nontrivial cubic root
of unity), leads to the following result, which, by combining the qKZ ap-
proach [4, 5, 31] to loop models and the proof [2] by Cantini and Sportiello
of the Razumov–Stroganov conjecture [20], is actually a theorem:

Theorem 1.5.
Ψr(zi = 1, i = 1, . . . , N ; τ = 1) = |FPLr|

Deriving Conjecture 1.4 from the properties of the sheaf σr would provide
a geometric justification for the Razumov–Stroganov correspondence.

1.5. The rectangular case and plane partitions

In the present work, we study σr in the case that r is a rectangular Young
diagram:

(1.3) r =
N−n−c

c

b n−b

for two nonnegative integers b, c. We also define for future use a = N/2 −
(b+ c). We then prove Conjecture 1.1 in that case.
We further specialize to N = 2n, as in Section 1.3. If a < 0, we shall

immediately conclude that π∗[σr] = 0, corresponding to the trivial case of
Conjecture 1.3. If a > 0, we note that the link pattern corresponding to r
is of type “(a, b, c)”, that is, of the form

(1.4) r =

... a

... b
... c

We shall then prove Conjecture 1.3 and 1.4 in that case. Note that such
a type of link pattern was already considered in [7, 30, 33] in the context
of FPL enumeration and the Razumov–Stroganov conjecture, but without

ANNALES DE L’INSTITUT FOURIER
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any connection to geometry. In particular, the following result will play a
role in what follows:

Theorem 1.6 ([7]). — There is a bijection between FPL(a,b,c) (FPLs
with connectivity (a, b, c)) and PP(a, b, c), which is by definition the set of
plane partitions of size c× b and maximal height a.

For the purposes of this paper, it is best to use the following definition
of PP(a, b, c): it is the set of a-tuplets of

([b+c]
b

)
for which the order 6

(pointwise comparison of ordered elements of subsets) is a total order:

PP(a, b, c) := {(s1, . . . , sa) : s1 6 s2 6 · · · 6 sa}

In turn, we can depict elements of PP(a, b, c) in various equivalent ways, as
demonstrated in Figure 1.2: from top left to bottom right, plane partitions,
lozenge tilings, Non-Intersecting Lattice Paths (NILPs), dimer configura-
tions. These representations will be discussed again in what follows when
they are needed.

1.6. Plan of the paper

In Section 2 we study CPLs using integrability and in particular the
Yang–Baxter equation, with which we show that the conjectured formula1.1
has the right symmetry and vanishing properties. In Section 3 we give de-
tail on conormal varieties to Grassmannian Schubert varieties, and define
the sheaves referenced in Conjectures 1.1 and 1.3. Our definition of these
sheaves in Section 3.3, for arbitrary G/P , is much more general than is
required for the rest of the paper. In Section 4 we specialize to the case
of a smooth Schubert subvariety of a Grassmannian Gr(n, 2n), determine
the conjectured sheaf in this case, and compute the degree 2bc|PP(a, b, c)|
of the conormal variety. In Section 5 we define the family degenerating
the conormal variety and the sheaf it bears, whose special fiber we deter-
mine in Section 6. It turns out to have one component for each element of
PP(a, b, c), a toric complete intersection of bc many quadrics. With this in
hand, we prove in Section 7 our Conjectures 1.1 and 1.3 in the Grassmann–
Grassmann case.

TOME 69 (2019), FASCICULE 3
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2 1 1 0

1 1 0 0

1 0 0 0

({1, 3, 5, 7}, {3, 5, 6, 7}) ∈ PP(2, 4, 3)

record heights
viewed from top

dual

squash
horizontal edges

level
curves,

shifted

fol
low

an
d

record
down

steps

Figure 1.2. Various depictions of a particular a = 2, b = 4, c = 3
configuration.

2. Integrability of the CPL model

2.1. Basic properties

Introduce the following notation, borrowed from integrable models:

y

z

= a(y/z) + b(y/z)

ANNALES DE L’INSTITUT FOURIER
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where recall from Conjecture 1.1 that a(x) := t−1/2x1/2 − t1/2x−1/2 and
b(x) := x−1/2 − x1/2. The dotted lines are purely cosmetic and will be
frequently omitted.

Proposition 2.1. — The following identities hold: the Yang–Baxter
equation

(2.1)

z1 z2 z3

=

z1 z2 z3

the unitarity equation

(2.2)

z1 z2

= a(z1/z2)a(z2/z1)

z1 z2

and the special value

(2.3)

z z

= (t1/2 − t−1/2)

z z

All these identities should be understood as an equality of the coefficients
on both sides of all the diagrams with a given connectivity of the external
points, with the rule that each closed loop incurs a weight of τ . The proof
of the proposition is a standard calculation.
Let us now introduce the CPL partition function with given top-connect-

ivity r ∈
([N ]
n

)
:

Zr :=

top-connectivity r

y1

...

yn

z1 ··· zN

TOME 69 (2019), FASCICULE 3



1100 Allen KNUTSON & Paul ZINN-JUSTIN

where we recall the connectivity rules: (b,l), (b,r), (b,t), (l,t), (t,t), and the
connectivity of the top midpoints is given by the link pattern r.
Denote by τi the elementary transposition i↔ i+1. By abuse of notation,

also let τi denote the operator acting on polynomials of the variables zi,
i = 1, . . . , N that permutes zi and zi+1.

Lemma 2.2. — We have the two symmetry properties:
• Zr is a symmetric function of the yi.
• Assume i and i+ 1 are not connected in r. Then τiZr = Zr.

Proof. — This is a standard Yang–Baxter-based proof. Repeated appli-
cation of (2.1) leads to

top-connectivity r

y1

yi

yi+1

yn

z1 ··· zN

=

top-connectivity r

y1

yi+1

yi

yn

z1 ··· zN

Imposing top-connectivity r means in particular that left vertices are not
allowed to connect between themselves, and the same for right vertices.
This implies that the extra plaquette on either side of the equation above
(represented by a crossing) must be of the form , so it does not affect
connectivity and can be removed, and its weight a(yi/yi+1) compensates
as well between l.h.s. and r.h.s. Once these plaquettes are removed, we get
back to Zr itself, except on the left hand side yi and yi+1 are switched. This
implies symmetry of Zr by exchange of yi and yi+1 for all i = 1, . . . , n− 1,
and therefore by any permutation of the y’s.
The same argument, with the extra crossing inserted at the bottom (nec-

essarily of the form ) and then moved upwards, leads to the formula

(2.4) a(zi+1/zi)Zr = a(zi+1/zi)τiZr + b(zi+1/zi)
∑

s: eis=r
τ δr,sτiZs

where the summation is over link patterns s which can be obtained from r

by concatenating them with ei = . This shows in particular that if i
and i+1 are not connected in r, the summation is empty and τiZr = Zr. �

ANNALES DE L’INSTITUT FOURIER
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2.2. Reformulation of Conjecture 1.1

With these notations, Conjecture 1.1 is written

[σr] = mr

n∏

i,j=1
a(yi/yj)−1Zr

We now propose an alternate formulation of this conjecture. A class in
KT (T ∗Gr(n,N)) is entirely determined by its restrictions to T -fixed points,
which are indexed by

([N ]
n

)
. Recall from Section 1.2 that the restriction map

to the coordinate subspace Cs, s ∈
([N ]
n

)
, denoted by |s, amounts to the

specialization yi = zsi , i = 1, . . . , n. We are thus naturally led to the
computation of Zr after such a substitution, which we can perform with
the help of Proposition 2.1; here shown on an example:

Zr|s =

top-connectivity r

z4

z3

z1

z1 z2 z3 z4 z5

s={1,3,4}

= a(1)n

top-connectivity r

z1 z3 z4z2 z5

(2.5)

=
∏

i∈s,j∈s
a(zi/zj)

∏

i∈s,j∈s̄
i<j

a(zi/zj)

top-connectivity r

z1 z3 z4z2 z5

=
∏

i∈s,j∈s
a(zi/zj)

∏

i∈s,j∈s̄
i<j

a(zi/zj)

top-connectivity r

z1 z3 z4z2 z5

where between the first and second line we have pulled out all the south-east
lines using Proposition 2.1, producing the first factor, and then removed
them altogether because the constraint that bottom vertices cannot connect
between themselves forces plaquettes of type a, producing the second factor.
After rearranging the lines to produce the final picture, the connectivity
must be understood as follows: the top vertices have connectivity given
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by the link pattern r, whereas the first n bottom vertices cannot connect
between themselves, and similarly for the last N − n.

There are two ways to understand the resulting picture. On the one hand,
reintroducing the dotted lines, we recognize the complement of the Young
diagram of s (cf. (1.1)):

s = {1, 3, 4} ∈
(

[5]
3

)
→ →

z1 z3 z4z2 z5

On the other hand, we also recognize this diagram to be the graphical
representation of a (or any) reduced word of the Grassmannian permutation
of {1, . . . , N} which sends {1, . . . , n} (at the bottom) to s (at the top).(2)

Let us therefore define Zr,s to be the prefactor
∏
i∈s,j∈s̄
i<j

a(zi/zj) times
the CPL partition function for the diagram defined in either of the two
ways above, with top-connectivity given by r, in which we recall that each
crossing represents as above one of the two plaquettes with their weights
and that closed loops have a weight of τ .
We can thus reformulate Conjecture 1.1 as follows:

Conjecture 1.1′. — The restriction of the KT -class of the sheaf σr to
the fixed point s satisfies

(2.6) [σr|s] = mr Zr,s

This is the same sort of restriction-to-fixed-points formula as in [25]
(or the AJS/Billey and Graham/Willems formulae for restricting Schubert
not conormal Schubert classes), except that [25] is working with Maulik–
Okounkov’s stable basis, not our basis, and (less importantly) that formula
in [25] is in H∗T not KT .

Remark 2.4. — For i, j ∈ {1, . . . , N}, and s = {. . . , i, . . .}, s′ =
{. . . , j, . . .} related by the transposition i ↔ j, because of the very defi-
nition of the Zr,s as a specialization (y1, . . . , yn) = (zs1 , . . . , zsn) of Zr, the
following congruence holds:

zi − zj
∣∣ (Zr|s − Zr|s′)

This is exactly the K-theoretic GKM criterion for being in the image of the
restriction map (see e.g. [23, A.4], [26, Cor. 5.11]). Contrary to Zr itself,
(2) In fact, the Yang–Baxter equation (2.1) would ensure independence of the choice of
reduced word, but is not necessary in the Grassmannian case, nor more generally in the
321-avoiding case. Moreover, because of the unitarity equation (2.2), the reducedness of
the word is irrelevant.
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the Zr|s are Laurent polynomials, and are therefore the point restrictions
of a uniquely defined element of KT (Gr(n,N)) ∼= KT (T ∗Gr(n,N)).

2.3. Two lemmas

We need two more lemmas.

Lemma 2.5. — Zr,s satisfies the triangularity property: Zr,s = 0 unless
s ⊆ r, and
(2.7) Zr,r =

∏

i∈r,j∈r̄
i<j

a(zi/zj)
∏

i∈r,j∈r̄
i>j

b(zi/zj).

Proof. — Induction on s. If s = {1, . . . , n}, the diagram of Zr,s contains
no plaquette, and the resulting top-connectivity is the completely unpaired
link pattern, i.e., r = s.

Now, pick s ∈
([N ]
n

)
, and assume that the property is true for any s′,

s ( s′. Denote by sC the complement of the Young diagram of s in the
rectangle (N − n)× n.
Pick any protruding box in sC . Choose s′ to be the Young diagram

obtained from s by adding that box. Equivalently, choose an i such that
i 6∈ s, i + 1 ∈ s, and define the subset s′ = τis. This means that the Zr,s
can be obtained from the Zr′,s′ by adding an extra crossing, e.g.,

s′ = {3, 5, 6}

r′

7→

s = {4, 5, 6}

r

By the induction hypothesis, the only nonzero Zr′,s′ are the ones for which
s′ ⊆ r′. The extra crossing can take two forms:
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(1) , which does not change the connectivity; these contribute
to Zr′,s, which satisfies the upper triangularity of the lemma as
s ( s′ ⊆ r′.

(2) , that is, r = eir
′, where as before we denote eir′ the link

pattern obtained from r′ by pasting this extra plaquette. There are
four possibilities, depending on the local configuration of r′:

(2a) i ∈ r′, i+1 6∈ r′: then eir′ = τir
′, i.e., the Young diagram of (eir′)C

is obtained from r′C by adding an extra box:

r′ = {3, 5, 6}

7→

r = {4, 5, 6}

Since the same procedure goes from s′C to sC , we still have (eir′)C⊆
sC , or s ⊆ eir′ = r.

(2b) i, i+ 1 ∈ r′:

=

r′ = {3, 4, 6}

7→ =

r = {2, 4, 6}

Effectively using the Temperley–Lieb relation eiei−1ei = ei, we see
that the extra ei destroys the plaquette south-west of it, resulting
in eir′ = τi−1r

′, so that s ( s′ ⊆ r′ ( eir
′ = r.

ANNALES DE L’INSTITUT FOURIER



GRASSMANN–GRASSMANN CONORMAL VARIETIES 1105

(2c) i, i+ 1 6∈ r′ is treated similarly as the previous case:

=

r′ = {2, 5, 6}

7→ =

r = {2, 4, 6}

(2d) i 6∈ r′, i ∈ r′:

=

r′ = {2, 4, 6}

7→ =

r = {2, 4, 6}

i.e., r′ pairs i and i+ 1, in which case effectively using e2
i ∝ ei, we

find eir′ = r′, and once again we note s ( s′ ⊆ r′ = r.

Only possibility (2a) can lead to r = s, and only in the case r′ = s′ (as in
the example); we immediately obtain inductively the formula for Zr,r. �

Lemma 2.6. — Assume i and i+1 are not connected in r. Then τiZr,s =
Zr,τis.

Proof. — This is a direct consequence of the two parts of Lemma 2.2. �
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3. Geometry and the conjectured sheaves

3.1. Parametrization

We coordinatize the Grassmannian via its Plücker embedding:
Gr(n,N)(3.1)

=





[
ps, s∈

(
[N ]
n

)]
∈ P(Nn)−1 : ∀ s±∈

(
[N ]
n± 1

)
,
∑

i∈s+\s−
ps−∪ips+\i = 0





(We use here the implicit convention that when adding/subtracting indices
from a subset, the index is added/subtracted at the end, but the sign of the
permutation sorting the indices into increasing order must be introduced.)
In these coordinates, Hodge showed that Schubert varieties and cells are

easily defined as:

Xr =
{[
ps, s ∈

(
[N ]
n

)]
∈ Gr(n,N) : ps = 0 unless s ⊆ r

}
,

Xr
o = Xr ∩ {pr 6= 0}

One has dimXr = |r|, the area of the partition.
The cotangent bundle T ∗Gr(n,N) can be identified with
T ∗Gr(n,N) = {(V, u) ∈ Gr(n,N)×Mat(N) : Im u ⊆ V ⊆ Keru}

and its projection µ (the moment map) to the second factor has image {u ∈
Mat(N) : u2 = 0, rank(u) 6 n}, the closure of a nilpotent GL(N)-orbit
(of which µ is the Springer resolution, which won’t be especially relevant).
In Plücker coordinates, and denoting by M = (Mi,j) the transposed (for
convenience) matrix of u, this space is defined by the following equations:

(3.2) T ∗Gr(n,N)

=





[
ps, s ∈

(
[N ]
n

)]
∈ Gr(n,N), (Mi,j) ∈ Mat(N) :

∑

j∈s+
ps+\jMi,j = 0, s+ ∈

(
[N ]
n+ 1

)
, 1 6 i 6 n

∑

i∈s̄−
ps−∪iMi,j = 0, s− ∈

(
[N ]
n− 1

)
, 1 6 j 6 n





Let Mat<(N) denote the space of strictly upper triangular matrices. If we
consider pairs ([ps],M) ∈ T ∗Gr(n,N) such thatM ∈ Mat<(N), we get the
union of the conormal bundles of Schubert cells, or equivalently, the union
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of the conormal Schubert varieties CXr; this is because M ∈ Mat<(N)
is the moment map condition for the action of the Borel subgroup B− of
invertible upper triangular matrices.

(3.3)
⋃

r∈([N]
n )
CXr

=





[
ps, s ∈

(
[N ]
n

)]
∈ Gr(n,N), (Mi,j) ∈ Mat<(N) :

∑

j∈s+
ps+\jMi,j = 0, s+ ∈

(
[N ]
n+ 1

)
, 1 6 i 6 n

∑

i∈s̄−
ps−∪iMi,j = 0, s− ∈

(
[N ]
n− 1

)
, 1 6 j 6 n





(the only difference from (3.2) being the < subscript on the Mat).
The CXr are the irreducible components of that space; under

the map µ they are sent into the orbital scheme {M ∈ Mat<(N) : M2 = 0,
rank(M) 6 min(n,N − n)}. More precisely, if the link pattern r has the
maximal number of chords, then CXr is sent to an irreducible component
of that orbit closure, called an orbital variety (the other images µ(CXr)
have smaller dimension than the components, i.e. the general fibers have
positive dimension; we work out these general fibers in Section 3.4). As the
action of B+ on the nilpotent orbit closure {M : M2 = 0} has finitely
many orbits (it is spherical), each µ(CXr) is a B+-orbit closure. It is easy
to describe a representative of that orbit [16]: define r< to be the upper
triangular matrix with 1s at (i, j) for each chord i < j of the link pattern
of r, 0s elsewhere. Then

µ(CXr) = B+ · r<
where · means conjugation action.
Rank conditions of Southwest submatrices are preserved by B+-conju-

gation, so that we find the following inclusion and (by working a little
harder [24]) even the equality of sets

(3.4) µ(CXr) = {M = (Mi,j) : M2 = 0, and for each (i, j),
rank of M Southwest of (i, j) 6 rank of r< Southwest of (i, j)}.

3.2. Reformulation of Conjectures 1.3 and 1.4

Since µ :
⋃
r CX

r → Mat<(N) is proper, we can define µ∗[σr] ∈
KT (Mat<(N)) ∼= KT (pt) ∼= Z[t±, z±1 , . . . , z±N ] without localization (i.e.,
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without tensoring with the fraction field of KT (pt)). Its relation

(3.5) µ∗[σr] = π∗[σr]
∏

16i<j6N
(1− t zi/zj)

to π∗[σr], the (improper) pushforward to a point, derives from the weights
t zi/zj , 1 6 i < j 6 N of the T -action on the affine space Mat<(N).

Conjecture 1.3 can then be reformulated in terms of µ∗[σr] as

Conjecture 1.3′. — The pushforward of σr to Mat< in T -equivariant
K-theory is equal, up to normalization, to Ψr:

µ∗[σr] =
{

0 r 6⊆
(1− t)n(n−1)m̃r Ψr r ⊆

And similarly, Conjecture 1.4 can be rewritten assuming Conjecture 1.3
as

Conjecture 3.2. — µ∗[σr] can be decomposed as a sum of products
of the form

µ∗[σr] =
∑

f∈FPLr

mf

n(n−1)∏

a=1

(
1− trf,azif,a/zjf,a

)

where rf,a ∈ {1, 2}, and mf is a monomial. Explicitly,

mf = m̃rt
−|{a: rf,a=2}|/2

n(n−1)∏

a=1
zjf,a .

We comment on the vanishing conclusion of Conjecture 1.3′. If we coarsen
from K-homology to ordinary (Borel–Moore) homology, the K-class [σr]
maps to the fundamental class [CXr]. As we will show in Section 3.4, the
condition r ⊆ is equivalent to µ : CXr → µ(CXr) being birational, so
when r 6⊆ we get the homology vanishing result µ∗[CXr] = 0. In this
sense, the subtle construction of σr in the next section is our attempt to
refine this simple vanishing in homology to a much more precise vanishing
in K-homology. (What one learns for free is that the sheaves Rµiσr are
supported on proper subschemes of µ(CXr) when r 6⊆ , rather than
learning that their support is actually empty.)

3.3. The conjectured sheaves {σr}

We define a sheaf σr on any conormal Schubert variety CXr ⊆ T ∗G/P ,
although our most general conjectures concern the case G/P a Grassman-
nian.
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We will need to twist the structure sheaf of CXr := CXr◦ by a line bundle
not available on T ∗G/P . So let g : G/B � G/P be the G-equivariant
projection, and w ∈ W the minimum-length lift of r ∈ W/WP , making
g : Xw

◦ → Xr
◦ an isomorphism. These give us the commuting squares

G/B

g

��

g∗(T ∗G/P )��

��

C̃Xr := closure of
{(x∈Xw

◦ , �v ∈T ∗
f(x)G/P ) : �v ⊥Tf(x)X

r
◦}

� ���

��

∼��
G/P T ∗G/P�� CXr := closure of

{(y ∈Xr
◦ , �v ∈T ∗

y G/P ) : �v ⊥TyXr
◦}

� ���

where the closures taken of the fourth column, to define the third, are taken
inside the second. This fourth vertical map (before taking the closures),
taking (x,~v) 7→ (g(x), ~v), is an isomorphism. Hence its closure C̃Xr → CXr

is birational; call this map Cg. Denote the composite G/B ←− C̃Xr (with
image Xw) of the left two maps on top by fG/B , and the corresponding
composite G/P ←− CXr (with image Xr) on bottom by fG/P . The first
and third columns are then a commuting square

Xw

g

��

C̃Xr
fG/B��

Cg

��
Xr CXr

fG/B��

The space G/P comes with a list of fundamental weights ωi orthogonal
to the negative simple roots in P . Let ωG/P be the sum of these, i.e. its
Borel–Weil line bundle O(ωG/P ) is the smallest ample line bundle on G/P .
On some homogeneous spaces G/Q, in particular every G/B, the anti-

canonical line bundle possesses a (unique) square root which we will denote
O(ρG/Q), e.g. ρG/B = ωG/B . (By contrast, for G/P = Gr(n,N) we have
ρG/P = N

2 ωG/P .) Then O(−ρG/Q) is the Borel–Weil line bundle corre-
sponding to −ρG/Q := − 1

2
∑
β∈∆G

+\∆
Q
+
β, and all of its sheaf cohomology

groups vanish (unless P = G). We assume that G/P has such a square
root, with which to define our sheaf:

σr := f∗G/PO(ρG/P − ωG/P )⊗ (Cg)∗ f∗G/B O(−ρG/B)

= (Cg)∗ f∗G/B O


−g∗(ωG/P )− 1

2
∑

β∈∆P
+

β



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For example if G/P = G/B (where ρG/P = ωG/B and Cg = Id), this
simplifies to f∗G/B O(−ρG/B).
We now describe this construction in the Gr(n,N) case, with more detail

(when Xr, also, is a Grassmannian) to come in Section 4.3. The anticanon-
ical line bundle is O(N), possessing a square root iff N is even (which we
therefore assume), and O(ωG/P ) = O(1).
First, for each weight κ the Borel–Weil line bundle O(κ) on G/B can be

identified with the sheaf of rational functions on G/B bearing poles only
along the Schubert divisors Xrα , of order at most 〈α, κ〉. For κ = −ρ these
orders-of-pole are all −1, i.e. the sections must vanish along

⋃
αXrα .

We want the intersection of this divisor
⋃
αXrα with f

(
X̃r
)

= Xw.
By Monk’s rule, the intersection of Xrk with Xw is (non-equivariantly)
rationally equivalent to

∑
i6k<j//w◦(i↔j)lw[Xw◦(i↔j)] where l indicates a

strong Bruhat cover. Summing over k, we get
∑
w◦(i↔j)lw(j−i) [Xw◦(i↔j)].

Now we want to push this to CXr, where the term [Xw◦(i↔j)] drops
dimension unless w ◦ (i ↔ j) is again n-Grassmannian, mapping to some
Xr′ with r′ being r minus an outer corner. If that removed box is in position
(x, y), then i = n+1−x and j = n+y, hence j−i is the diagonal (:= x+y−1)
of the removed box.
To restate: if we push this class on G/B down to G/P , we get∑
r′=r\(x,y)(x + y − 1)[Xr′ ], which (because of those −1s) is off by O(1)

from the anticanonical class of Xr [1, Prop. 2.2.8(iv)]. In particular, the
sheaf σr is a line bundle iff Xr is Gorenstein, which (by [29]) happens ex-
actly when all the outer corners (x, y) of the partition r have x+ y− 1 = d

for the same d. In this Gorenstein case we can therefore skip construction
of C̃Xr and just pull O(−d) directly from G/P = Gr(n,N) to CXr.
Finally, we twist by O(ρG/P − ωG/P ) = O(N/2 − 1), obtaining (in this

Gorenstein case) the sheaf
σr = f∗G/P O(N/2− d− 1).

It will be convenient below to take d′ := d+ 1, i.e. d′ = x+y for each outer
corner (x, y).

3.4. Fibers of µ, and a small part of Conjecture 1.3′

The general fiber of CXr → B · r< can be computed most easily at the
point r<. That fiber consists of V ∈ Xr

◦ with Im r< 6 V 6 Ker r<. To
describe it, we look back at the second picture from (1.1), whose n top
edges run either SW/NE or NW/SE. If we picture Xr as the row-spans
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of row-echelon k × n matrices V , drawn atop a partition tilted as in that
figure, then we have three conditions to impose on the matrix V :

(1) Its row-span should lie in Xr. So we can assume that it is zero in
row i to the left of r’s ith element, which lies above the ith NW/SE
edge. We don’t go so far as to assume that V is in reduced row-
echelon form with pivots 1 in the r columns, as that would only get
us Xr

◦ not its closure Xr.
(2) Im r< 6 rowspan(V ). Equivalently, there is indeed a pivot above

any NW/SE edge connecting to another edge (necessarily, connect-
ing Westward to a NE/SW edge), and the rest of its row in V must
be all zeroes. Of course we can use the pivotal 1 and row operations
to kill the rest of the column, too.

(3) rowspan(V ) 6 Ker r<. Equivalently, each NE/SW edge that con-
nects to another edge (necessarily, Eastward to a NW/SE) should
have an entirely 0 column.

Let R be the number of pairings, so c′ = n − R, b′ = N − n − R are
the number of unmatched red dots in the link pattern with rays going left
and right, respectively. Then matched columns are constrained by (2), (3)
above, and unmatched columns contribute to c′, b′, as indicated below the
matrix in this example:

? 0 0 0 0 0 0 ? 0 0 ?

0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0

c′ 3 3 2 3 2 2 b′ 3 2 b′







c′
b′

If we remove the 0 columns from condition (3) leaving N − R = n + b′

columns, and remove the rows and columns of the R = n− c′ pivots from
condition (2), we are left with a c′ × (b′ + c′) matrix full of ?s. Therefore
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our fiber is the subGrassmannian Gr(c′, c′ + b′) of n-planes inside a fixed
(n+ b′)-plane, and containing a fixed (n− c′)-plane.
When all the outer corners of the partition r are on the same diagonal

d (the Gorenstein case), and letting d′ := d + 1, then c′ = min(0, d′ − n),
b′ = min(0, d′ − (N − n)). If we assume the fiber Gr(c′, c′ + b′) is not a
point, then d′ > max(n,N − n) > N/2 and c′ + b′ = 2d′ − N . On a
Grassmannian Gr(`,m) which isn’t a point, the line bundles O(j) have
no(3) sheaf cohomology if 0 > j > −m. Our line bundle O(N/2 − d′) on
the fiber Gr(c′, c′ + b′) is exactly halfway through this cohomology desert:

0 > N/2− d′ > −(c′ + b′) = 2(N/2− d′)
The fact H0(fiber; O(N/2− d′)) = 0 alone is already enough to demon-

strate the H0 vanishing statement of Conjecture 1.3′, in this Gorenstein
case, since a section in H0(CXr;σr) that vanishes on the general fiber must
vanish everywhere.

4. The case of r a c× b rectangle

We now consider the Young diagram r which is a c × b rectangle, as
in (1.3), and write c × b for this partition. Rectangles are precisely those
diagrams for which the Schubert variety Xr is smooth, and in this case
Xc×b is isomorphic to the Grassmannian Gr(b, b+c). The embedding inside
Gr(n,N) is particularly simple in Plücker coordinates, namely

Xc×b=
{

[ps, s∈S] : ps=
{
ps̃ s={s̃1+n̄−c, . . . , s̃b+n̄−c, n̄+b+1, . . . , N}
0 s ∩ {1, . . . , n̄−c} 6=∅ or s 6⊇ {n̄+b+1, . . . , N}

}

where n̄ = N − n, and the ps̃ are the Plücker coordinates of Gr(b, b + c).
From now on we use these “reduced” indices consisting of subsets s̃ of
{1, . . . , b + c} of cardinality b, i.e., in

([b+c]
b

)
, as well as the corresponding

order 6 (or its opposite order ⊆).
This rectangular case is even more special than the Gorenstein case (dis-

cussed at the end of Section 3.3) where the outer corners of r lay in a single

(3) Proof: O(j) on Gr(`,m) is the pushforward from GL(m)/B of the O(j`, 0m−`)
Borel–Weil line bundle, so instead of pushing O(j) from Gr(`,m) to a point we can push
O(j`, 0m−`) from GL(m)/B to a point (through Gr(`,m)). By Borel–Weil–Bott, a line
bundle O(λ1 > . . . > λm) on GL(m)/B has no cohomology iff λ + (m,m − 1, . . . , 1)
has a repeat, as ρGL(m)/B = (m,m − 1, . . . , 1) up to a constant. Here, that sequence
(reversed) is [1,m− `], [m− `+ 1 + j,m+ j], and these two intervals avoid overlap only
if m − ` + 1 + j > m − ` i.e. j > −1, or if m + j < 1 i.e. j < 1 −m, or if one of the
intervals is empty i.e., ` = 0,m.
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diagonal: now r = c×b has only one outer corner, in diagonal d = c+b−1,
and the sheaf σr is O(N/2−d−1) = O(a). (Recall that we are assuming N
even whenever we discuss the sheaf σr, and have defined a := N/2− b− c.)
Since Xc×b is itself a Grassmannian it has its own O(1) line bundle, which
conveniently is the restriction of the O(1) from Gr(n,N). Hence our space
and sheaf are simply the conormal bundle CGr(n,N) Gr(b, b+c) and its O(a)
line bundle pulled up from the base Gr(b, b+ c).

4.1. Equations of CXc×b

We now wish to write the equations of the one conormal bundle CXc×b

(not, as in (3.3), the union of many such). Let f be the map (V, u) 7→ V .
Appending (3.3), rewritten in terms of the remaining Plücker coordinates,
to the equations of Xc×b above would produce the union of all conormal
Schubert varieties inside f−1(Xc×b), namely

⋃
s⊆r CX

s; to exclude the
others we need equations involving M as well.
We proceed as follows. Since Xc×b is smooth, CXc×b f→ Xc×b is a vector

bundle, and the defining equations of CXc×b must be linear in the fiber
(Mi,j). We therefore select among (3.4) those that are linear: they are of
the form “Mi,j = 0 if there are no nonzero entries of r< Southwest of (i, j),
that is, if there are no chords of r inside the interval [i, j]”. This implies the
following block structure of M :

(4.1) M =




n̄− c b+ c n− b
n̄− c 0 B ?

b+ c 0 C

n− b 0




where the upper-right block has not been named since its entries never
occur in any equation.
We can now write (3.3) in terms of the submatrices B and C:

∑

j∈s+
Bi,jps+\j = 0, s+ ∈

(
[b+ c]
b+ 1

)
, 1 6 i 6 n̄− c(4.2)

∑

j∈s̄−
Cj,kps−∪j = 0, s− ∈

(
[b+ c]
b− 1

)
, 1 6 k 6 n− b(4.3)

In order to check that we have obtained all the equations of the vec-
tor bundle CXc×b, it is convenient to use the following observation. In-
side GL(N) acting on Gr(n,N) and therefore on T ∗Gr(n,N), the sub-
group G := GL(n̄− c)×GL(b+ c)×GL(n− b) leaves Xc×b invariant and
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the GL(b + c) factor acts transitively on the base, making CXc×b a G-
equivariant vector bundle. Now by inspection, the block structure (4.1) as
well as (4.2) and (4.3) are G-invariant, so that we only need to check that
the fiber of the vector bundle CXc×b f→ Xc×b has the correct dimension at
one particular point, for example a coordinate subspace with coordinates
s (where all pt = 0 for t 6= s). For each s+ ∈

([b+c]
b+1
)
containing s, one Bi,j

vanishes, and similarly for s− ∈
([b+c]
b−1
)
contained in s, one Cj,k vanishes.

So we find

dim(fiber)
= dim(B) +dim(C) +dim(?) −dim(B eqs)−dim(C eqs)
= (n̄−c)(b+c)+(n−b)(b+c)+(n̄−c)(n−b)−c(n̄−c) −b(n−b)
= nn̄− bc

which means the total space has dimension nn̄ = n(N−n), which is indeed
the dimension of CXc×b (a Lagrangian subvariety of T ∗Gr(n,N)).
Note that the other equations of (3.4) are

BC = 0(4.4)
rank(B) 6 b(4.5)
rank(C) 6 c(4.6)

The derivation just performed shows that they could be obtained from (4.2)
and (4.3), up to saturation w.r.t. the irrelevant ideal generated by the ps.
They define an A3 quiver locus [14] whose degree we will compute below
in Proposition 4.3, to be used in Section 6.2.
Summarizing: the embedding CXc×b ↪→ Gr(b, b+ c)×Mat(N) gives the

realization

(4.7) CXc×b

∼= ProjC
[
(ps)s∈([b+c]

b ), (Bi,j)[n̄−c]×[b+c], (Cj,k)[b+c]×[n−b], ?[n̄−c]×[n−b]
]

/
〈Plücker relations in the (ps), and Equations (4.2)− (4.6)〉

where the Plücker coordinates have degree 1, and the B,C degree 0, in this
N-graded ring.

4.2. Proof of Conjecture 1.1 in the rectangular case

We start with the analysis of Zr,s.
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Proposition 4.1. — For r the c × b rectangle, Zr,s is entirely deter-
mined by Lemmas 2.5 and 2.6.

Proof. — According to Lemma 2.5, Zr,s is zero unless the Young diagram
of s sits inside the c×b rectangle, or equivalently, the subset s is of the form
s = {s̃1+n̄−c, . . . , s̃b+n̄−c, n̄+b+1, . . . , N}, s̃ ∈

([b+c]
b

)
. Note that all such

subsets can be obtained from r = {n̄− c+ 1, . . . , n̄+ b− c, n̄+ b+ 1, . . . , N}
by a permutation which acts nontrivially only on {n̄−c+1, . . . , n̄+b}. Now
there are no chords in this subset in r, cf. (1.4). Lemma 2.6 then implies
that all nonzero specializations of Zr,s are obtained from each other, and
in particular from Zr,r, by permutation of the zn̄−c+1, . . . , zn̄+b. And Zr,r
is itself given by Lemma 2.5. �

Next, we analyze the sheaf σr and show that the restrictions [σr]|s of
its KT -class to fixed points satisfies the same properties as Zr,s’s, up to
normalization.
If s 6⊆ r, we have Cs 6∈ CXc×b, and therefore the restriction is trivially

zero. At the particular fixed point s = r, the weight of the line bundle
itself is

∏
i∈s z

−a
i , and the weights in the normal directions to CXc×b ⊆

T ∗Gr(n,N) are given by a standard calculation, resulting in

(4.8) [σr]|r =
∏

i∈r
z−ai

∏

i∈r, j 6∈r

{
1− tzj/zi i < j

1− zi/zj i > j

Furthermore, the already mentioned GL(b+c)-equivariance ensures that
the restrictions at the fixed points indexed by s = {s̃1 + n̄− c, . . . , s̃b + n̄−
c, n̄+b+1, . . . , N}, s̃ ∈

([b+c]
b

)
, are related to each other by the permutation

of the {zn̄−c+1, . . . , zn̄+b} which sends s to r.
Comparing (4.8) with (2.6) and (2.7), and carefully keeping track of the

monomials, we conclude that Conjecture 1.1′ from Section 3.2 is verified
with

mr = tbc/2
n̄−c∏

i=1
z
−n/2
i

n̄+b∏

i=n̄−c+1
z
b−n/2
i

N∏

i=n̄+b+1
z
b+c−n/2
i

4.3. Vanishing of higher cohomology

Recall that f : CXc×b → Xc×b ⊆ Gr(n,N) is the projection of the
conormal bundle, and recall from the beginning of this section that

σr = f∗O(a)
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where a = N/2 − b − c and is integral. Conjecture 1.3 concerns the push-
forward of this line bundle to a point, which comes only from its global
sections:

Proposition 4.2. — If a > 0, then the line bundle σc×b on CXc×b has
no higher sheaf cohomology, and the restriction map on sections
H0(CXc×b; f∗O(a))→ H0(Xc×b; O(a)) is surjective. If a < −|N/2− n|,
then σc×b has no sheaf cohomology at all.

Proof. — We are grateful to Jake Levinson for explaining Weyman’s
sheaf cohomology techniques [27] to us, for the following application.

As a vector bundle over Gr(b, b+c), and ignoring the irrelevant ? variables
of (4.1), the space CXc×b is the vector bundle

Hom(Cn̄−c, S)⊗Hom(Q,Cn−b) ∼= (Q∗)⊕n−b ⊕ S⊕n̄−c

where S,Q are the tautological sub and quotient bundles on Gr(b, b + c),
from the sequence

0→ S → Cn ⊗OGr(b,b+c) → Q→ 0.

Sheaf cohomology is about the (derived) pushforward of f∗O(a) to a
point. We push it first to Gr(b, b+ c) (then from there to a point):

f∗f
∗(O(a)) ∼= O(a)⊗ f∗(OCXc×b)

∼= (Altb S∗)⊗a ⊗ Sym•(((Q∗)⊕n−b ⊕ S⊕n̄−c)∗)
∼= (Altb S∗)⊗a ⊗ Sym•(Q)⊗n−b ⊗ Sym•(S∗)⊗n̄−c

We can decompose each functor (Sym•)⊗m into Schur functors Scλ

(Sym•)⊗m ∼=
(⊕

k

Sc(k,0,...,0)

)⊗m

∼=
⊕

k1,...,km

m⊗

i=1
Sc(ki,0,...,0)

∼=
⊕

λ=(λ1>...>λm)

(Scλ)⊕ dimSλ(Cm)

The third isomorphism uses the Pieri rule m− 1 times to assemble SSYT
out of m horizontal strips of various lengths (ki). The number of ways to
achieve a particular shape λ is the number of SSYT with values 6 m, which
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is the dimension of the GL(m)-irrep Sλ(Cm). Now

f∗f
∗(O(a))

∼=
⊕

λ=(λ1>...>λn−b)
µ=(µ1>...>µn̄−c)

Sc(a,a,...,a)(S∗)⊗ Scλ(Q)⊕ dimScλ(Cn−b)

⊗ Scµ(S∗)⊕ dimScµ(Cn̄−c)

∼=
⊕

λ=(λ1>...>λn−b)
µ=(µ1>...>µn̄−c)

Scλ(Q)⊕ dimScλ(Cn−b) ⊗ Scµ+(a,...,a)(S)⊕ dimScµ(Cȳ−c)

If n − b > dimQ = c, then Scλ(Q) will vanish if λc+1 > 0. Whereas if
n − b < c, we can pad out λ with c − (n − b) zeroes. The same remarks
apply to n̄ − c vs dimS = b. So hereafter we regard λ, µ as sequences of
length c, b respectively. The total padding is

min(0, b+ c− n) + min(0, b+ c− n̄)

=





0 if b+ c 6 min(n, n̄) hence a > 0
b+ c−min(n, n̄) > −a if b+ c ∈ (min(n, n̄),max(n, n̄)]
2(b+ c)−N = −2a > −a if b+ c > max(n, n̄)

depending on whether we pad neither, one of, or both of λ, µ with 0s. The
first and third cases will be the ones addressed in the proposition, as in the
third case,

−a = b+c−N/2 > max(n, n̄)−N/2 = max(n−N/2, n̄−N/2) = |n−N/2|.
The summand Scλ(Q)⊗Scµ+(a,...,a)(S∗) on Gr(b, b+c) is itself the push-

forward of the line bundle O(λ,−(a, . . . , a) − w0µ) on GL(b + c)/B along
the fiber bundle GL(b + c)/B � Gr(b, b + c). Now we need to study the
sequence (λ,−(a, . . . , a)− w0µ) + ρ (recall ρ = (c+ b, c+ b− 1, . . . , 3, 2, 1)
from footnote (3)) to apply Borel–Weil–Bott.
If a > 0, then this sequence (λ,−(a, . . . , a)− w0µ) is weakly decreasing,

so its line bundle is dominant and has no higher cohomology. The first
summand O(a) ⊗ Sym0((S⊕n̄−c ⊕ (Q∗)⊕n−b)∗) ∼= O(a) already gives us
enough sections over CXc×b to restrict to the sections we want on Xc×b.

If we’re in the third case, so both λ, µ are each padded out with a positive
number of zeroes (indeed, strictly more than a′ := −a of them total), then
(λ,−w0µ) looks like this:




c︷ ︸︸ ︷
λ1, . . . , λn−b, ︸ ︷︷ ︸

>a′

0, . . . , 0,
b︷ ︸︸ ︷

0, . . . , 0,−µn̄−c, . . . ,−µ1




TOME 69 (2019), FASCICULE 3



1118 Allen KNUTSON & Paul ZINN-JUSTIN

Choose a segment of length a′ + 1 in that region of 0s, say in positions
k . . . k + a′, including a 0 from each side (this is where we use b + c >

max(n, n̄)) i.e. k < c < c+ 1 < k + a′. When we add (a′, . . . , a′) to −w0µ,
that segment becomes (. . . , 0, a′, . . .). Then when we add ρ, that segment
becomes (N − k + 1, N − k − 2, . . . , N − k + 2, N − k + 1), and this repeat
of N − k + 1 (and Borel–Weil–Bott) kills all the sheaf cohomology. �

If we factor that pushforward through the affinization µ : CXc×b →
Mat<(N), (V,M) 7→M where M =

( 0 B ?
0 C

0

)
as in (4.1), then we obtain a

module over the ring C[(Bi,j), (Cj,k)], namely the degree a component of
the graded ring in (4.7).
In particular, a set of C[(Bi,j), (Cj,k)]-module generators of the global

sections of σr is formed by all the monomials of degree a in the projective
coordinates (ps)s∈S , and using the Plücker relations as straightening law
we can already generate this module only using weakly Bruhat-decreasing
a-tuplets from

([b+c]
b

)
.

4.4. The degree of the orbital variety (assuming hereafter that
N = 2n and a > 0)

In the rest of this paper, we assume that N = 2n, i.e., n̄ = n and a+ b+
c = n. According to Proposition 4.2, σr has no higher sheaf cohomology,
and according to Section 3.4, if a < 0, H0 is also zero, which is consistent
with the first case of Conjecture 1.3′. We therefore also assume that a > 0.
Note that the block structure of M of (4.1) takes the slightly more sym-

metric form

(4.9) M =




a+ b b+ c c+ a

a+ b 0 B ?

b+ c 0 C

c+ a 0




and (4.2) and (4.3) become
∑

j∈s+
Bi,jps+\j = 0, s+ ∈

(
[b+ c]
b+ 1

)
, 1 6 i 6 a+ b(4.10)

∑

j∈s̄−
Cj,kps−∪j = 0, s− ∈

(
[b+ c]
b− 1

)
, 1 6 k 6 a+ c.(4.11)

The affinization µ(CXc×b) of this conormal bundle is the orbital variety
defined by (4.4)–(4.6).
For Section 6.2 to come, we need the following result:
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Proposition 4.3. — For r = c × b, the degree of the affine cone
µ(CXc×b) is 2bc|PP(a, b, c)|.

Proof. — We drop the ? variables, since as they are unconstrained they
don’t affect the degree. We will reduce to the a = 0 case, where the rank
conditions (4.5)–(4.6) are automatically satisfied and the variety {(B,C) :
BC = 0} is a quadratic complete intersection of degree 2bc = 2bc|PP(0, b, c)|.
For general a, (4.4)–(4.6) define a quiver cycle for the quiver + dimension

vector Ca+b B→ Cb+c C→ Cc+a, whose degree we compute with the “pipe
formula” of [14].
The lacing diagrams [14, §3] for this quiver cycle are very simple: the

bottom b dots in the a + b stack are connected (noncrossingly) to some
subset s ∈

([b+c]
b

)
of the dots in the b + c stack, leaving the complement s̄

to connect to the bottom c dots in the c+ a stack.
We extend these partial permutations to permutations π(s), ρ(s) of a+

b+ c, as in [14, §2.1]:
• π(s) ∈ Sa+b+c takes

– [1, b] to s ⊆ [1, b+ c]
– [b+ 1, b+ a] to [b+ c+ 1, b+ c+ a], then possibly a descent,
– [b+ a+ 1, b+ a+ c] to s̄, while

• ρ(s) ∈ Sa+b+c takes
– s̄ to [1, c],
– [b+ c+ 1, b+ c+ a] to [c+ 1, c+ a], then possibly a codescent,
– s to [c+ a+ 1, c+ a+ b].

So far the pipe formula tells us

deg(µ(CXc×b)) =
∑

s∈([b+c]
b )
|{pipe dreams for π(s)}| |{pipe dreams for ρ(s)}|.

Since π(s) and ρ(s)−1 are Grassmannian permutations, their pipe dreams
are in natural correspondence with SSYT [15]. The shapes of the corre-
sponding Young diagrams are given respectively by the subsets s̄ (viewed a
c-subset of [a+ b+ c], so that the Young diagram sits inside the (a+ b)× c
rectangle) and s (viewed a b-subset of [a+b+c], so that the Young diagram
sits inside the (a+ c)× b rectangle):

pipe dreams for π(s) ←→ SSY T (s̄)
with entries 6 a+b

pipe dreams for ρ(s)←→ pipe dreams for ρ(s)−1←→ SSY T (s)
with entries 6 a+c
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(Equivalently, viewing s as a Young diagram inside the c× b rectangle, and
similarly s̄ as its transpose followed by a complementation inside b×c, then
we extend them by concatenating them vertically with a rectangular block
of size a× b for the former, a× c for the latter.)
These numbers compute the dimensions of certain GL(a+ b),GL(a+ c)

representations; if we denote by Vr,i the representation of GL(i) associated
with the Young diagram of the subset r, then one has the Weyl dimension
formula dimVr,i = ∆(r̄)

∆(1,...,i) where ∆( · ) denotes the Vandermonde deter-
minant. Here,

dimVs̄,a+b dimVs,a+c

= ∆(s1, . . . , sb, b+c+1, . . . , b+c+a)∆(s̄1, . . . , s̄c, b+c+1, . . . , b+c+a)
∆(1, . . . , a+ b)∆(1, . . . , a+ c)

=
∆(s)∆(s̄)

∏b
i=1
∏a
j=1(b+ c+ j − si)

∏c
i=1
∏a
j=1(b+ c+ j − s̄i)

∆(1, . . . , b)∆(1, . . . , c)
∏b
i=1
∏a
j=1(i+ j − 1)

∏c
i=1
∏a
j=1(i+ j − 1)

= |PP(a, b, c)| ∆(s)∆(s̄)
∆(1, . . . , b)∆(1, . . . , c)

= |PP(a, b, c)| dimVs̄,b dimVs,c

Plugging into the previous formula, this gives

deg(µ(CXc×b)) =
∑

s∈([b+c]
b )

dimVs̄,a+b dimVs,a+c

= |PP(a, b, c)|
∑

s∈([b+c]
b )

dimVs̄,b dimVs,c

= |PP(a, b, c)| 2bc

the last step being the a = 0 case solved at the beginning (or one could use
the RSK* correspondence). �

5. The degeneration

Hereafter, let A be the ring with generators {Bi,j , Cj,k, ?i,k} and relations
(4.4)–(4.6), whose Spec is the orbital variety µ(CXc×b), i.e., the degree 0
part of the homogeneous coordinate ring of CXc×b presented in (4.7).
By Proposition 4.2, the KT -theoretic pushfoward µ∗(σc×b) ∈

KT (Mat<(N)) is the class of the degree a component of that homogeneous
coordinate ring. This is naturally a module over the degree 0 component A.
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As such, if we take Fr to be the free module spanned by degree amonomials
in the Plücker coordinates, then we have a short exact sequence

0→Mr → Fr → H0 (CXc×b; p∗O(a)
)
→ 0

where Mr gives the relations between the degree a monomials.
Using the “straightening relations” on Plücker coordinates, we can shrink

our generating set to the Plücker monomials pS :=
∏a
i=1 psi where S =

(s1 6 · · · 6 sa), i.e. S lies in PP(a, b, c), giving a smaller presentation
0→M ′r → F ′r → H0 (CXc×b; p∗O(a)

)
→ 0

However, we understand the relations generating Mr much better than
those generating M ′r, so we will need to work with both sequences.

In order to analyze µ∗(σc×b) in more detail, we define in this section a
degeneration of Mr by assigning weights to the generators of Fr and the
B,C variables of A, and then keeping only lowest weight terms of elements
ofMr. Our principal goal in the next two sections is the following theorem:

Theorem 5.1. — The l.h.s. of (4.10), (4.11), (4.4) times suitable
Plücker monomials form a Gröbner basis(4) for the A-submodule M ′r 6
F ′r, i.e.

in(M ′r)

=
〈

in


∑

j∈s+
Bi,jps+\jps2 . . . psa


 , s+ ∈

(
[b+ c]
b+ 1

)
, 1 6 i 6 a+ b,

in


∑

j∈s̄−
Cj,kps−∪jps2 . . . psa


 , s− ∈

(
[b+ c]
b− 1

)
, 1 6 k 6 a+ c

in



b+c∑

j=1
Bi,jCj,kps1 . . . psa


 , 1 6 i 6 a+ b, 1 6 k 6 a+ c

〉

6 in(F ′r) := the free in(A)-module with basis {pS : S ∈ PP(a, b, c)}
where s1 6 · · · 6 sa run over PP(a, b, c). In particular, the in(A)-module
in(F ′r)/in(M ′r) has the same T -equivariant Hilbert series as the A-module
F ′r/M

′
r.

In Theorem 5.4 in Section 5.2 we will be more precise about the actual
leading forms. The first two types of equations will have single terms, and
those of the third type will have two terms.

(4) In Proposition 5.5 we give a foundational result that defines the sense of “Gröbner
basis” used here.

TOME 69 (2019), FASCICULE 3



1122 Allen KNUTSON & Paul ZINN-JUSTIN

We prove this in three big steps. The first (Proposition 5.2) is about show-
ing that, with the right term order on the Plücker variables, the Plücker
monomials from PP(a, b, c) dominate (essentially allowing us to consider
F ′r instead of Fr). The second step (Sections 5.3–5.4) is about finding the
leading forms of the relations in Theorem 5.1, as just described. Then in
Section 6 we show that those leading terms define a module of the correct
Hilbert series (and not larger), i.e. that the basis is Gröbner.

5.1. Plücker relations

Given a monomial ps1 . . . psa , we always order elements of each subset
increasingly: s` = {s`,1 < · · · < s`,b}, effectively indexing monomials with
a × b arrays of integers which are increasing along rows. We will often
use the uppercase letter as a shorthand notation for S := (s1, . . . , sa) =
(s`,m)16`6a,16m6b, and similarly denote pS := ps1 . . . psa .
Given a two-dimensional array of integers S = (s`,m), ` = 1, . . . , a,

m = 1, . . . , b, with no required monotonicity property, define

w(S) :=
b∑

m=1

a∑

`=1

(
1
2s`,m + `−m

)2

We define the weight of a generator of Fr, that is a monomial of degree a
in the ps, to be

(5.1) wt(ps1 . . . psa) = max
σ∈Sa

w(σ(S)), σ(S) = (sσ(1), . . . , sσ(a))

(we postpone to Section 5.2 the definition of the weights of the B,C vari-
ables of the ring, which we do not need for now). Finally, for x any linear
combination of such monomials, we define in(x) to be the sum of mono-
mials of x for which the function wt is minimal.

If we let P denote the space of Plücker relations, cf. (3.1), viewed as
linear forms on such monomials, namely

P = span


ps1 . . . psa−2

∑

i∈s+
ps−∪ips+\i,

(s1, . . . , sa−2) ∈
(

[N ]
n

)
, s± ∈

(
[N ]
n± 1

)


(assuming a > 2; otherwise P = {0}), then we can determine its degener-
ation:
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Proposition 5.2.

in(P) = span(ps1 . . . psa , (s1, . . . , sa) 6∈ PP(a, b, c))

Compare with [18, Thm. 14.6], whose proof we adapt here.
Proof. — Introduce the Stiefel map

φ(ps) = det
16m,m′6b

(xm,sm′ )

where the xm,j , 1 6 m 6 b, 1 6 j 6 b + c are formal variables. The First
Fundamental Theorem of Invariant Theory says that φ is an isomorphism
from the homogeneous coordinate ring of the Grassmannian to the ring
C[xm,j ]SL(b) of SL(b)-invariants. Then

(5.2) φ(pS) = φ(ps1) . . . φ(psa) =
∑

J=(j`,m)

κJ

b∏

m=1

a∏

`=1
xm,j`,m

To each monomial in this expansion associate its J = (j`,m), where each
column is assumed to be weakly increasing: j1,m 6 · · · 6 ja,m,m = 1, . . . , b,
and to that its weight

(5.3) w̃t

(
b∏

m=1

a∏

`=1
xm,j`,m

)
:= w(J)

By a slight abuse of notation, also write w̃t(P ) for the minimum of w̃t over
all such monomials of P .

We now have the key lemma:

Lemma 5.3. — The unique term in (5.2) with lowest weight is the prod-
uct of diagonal terms

a∏

`=1
xm,s`,m

Furthermore, w̃t(φ(pS)) 6 wt(pS) with equality iff S ∈ PP(a, b, c).

Proof of Lemma 5.3. — From the determinant structure, we see that
any monomial with array J can be obtained from S by a sequence of two
operations:

• Permuting each row individually, noting that the original rows are
sorted: s`,1 < · · · < s`,b, ` = 1, . . . , a.

• Reordering each column individually so that j1,m 6 · · · 6 ja,m,
m = 1, . . . , b.
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Each of these two operations increases w̃t. We want to show that the mini-
mum weight is attained when the first of them is the identity permutation.
Denote the second operation S 7→ So. We have the diagram

S
permute rows ��

reorder columns
��

T

reorder columns
��

So T o

where J = T o, and we want to compare w(So) and w(T 0).
We compute

w(T o)− w(So) =
a∑

`=1

b∑

m=1

((
1
2s

o
`,m + `−m

)2
−
(

1
2 t
o
`,m + `−m

)2
)

=
a∑

`=1

b∑

m=1
(`−m)(to`,m − so`,m)

=
a∑

`=1

b∑

m=1
`(to`,m − so`,m)−

b∑

m=1
m

a∑

`=1
(t`,m − s`,m)

where in the last line we have used the fact that for each `, the t`,m are a
permutation of the s`,m.

We now proceed by induction on the sum of inversion numbers of the per-
mutations of the rows taking S to T . Suppose T 6= S; then there exist two
successive columns r, r+1 where inversions occur on some row(s). We shall
show that removing the inversions on these two columns decreases strictly
the weight (this will be effectively equivalent to showing the property in
the case b = 2).
Consider the contribution of these two columns to w(T o) − w(So); it

takes the form

(5.4)
a∑

`=1

∑

m=r,r+1
`(to`,m − so`,m)

−
a∑

`=1

(
r

a∑

`=1
(t`,r − s`,r) + (r + 1)(t`,r+1 − s`,r+1)

)

=
a∑

`=1

∑

m=r,r+1
`(to`,m − so`,m) +

a∑

`=1
(s`,r+1 − t`,r+1)

The second part is easy to analyze: each inversion s`,r+1 = t`,r > t`,r+1 =
s`,r produces a strict increase of the weight by s`,r+1− s`,r. All we need to
prove is that the first part is greater or equal to zero.
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We proceed by induction again, this time on a. Pick among all the entries
of T in the columns r, r+ 1 the largest one; call it m. Pick a row on which
this entry appears (since it may appear multiple times); call m′ the other
entry on this row at the same columns r, r+ 1. We may always assume, by
reordering of the rows, that this row is the last one. Apply the induction
to the other rows. We have

a−1∑

`=1

∑

m=r,r+1
`(to(`−1)

`,m − so(`−1)
`,m ) > 0

where the superscript o(`− 1) means that the reordering of the rows only
affects the `− 1 first rows.
Now compare to w(to)− w(so):
a∑

`=1

∑

m=r,r+1
`(to`,m − so`,m)

=
a−1∑

`=1

∑

m=r,r+1
`(to(`−1)

`,m − so(`−1)
`,m )

+
∑

`: t`,m>m′
(t`,m −m′)−

∑

`: s`,r>m′
(s`,r −m′) (m′ = t`,m)

where the extra terms of the r.h.s. take into account the reordering of m′.
Note that t`,m > s`,r form ∈

(
r
r+1
)
. We conclude that

∑a
`=1 `(to`,m−so`,m) >

0, which is the induction hypothesis, and combining the inequalities for the
two parts of (5.4), we obtain the first part of the lemma.

Therefore,

(5.5) w̃t(φ(pS))) = w̃t

(
a∏

`=1
xm,s`,m

)

=
b∑

m=1
max
σ∈Sa

(
a∑

`=1

(
1
2sσ(`),m + `−m

)2
)

where, rather than use so, we have emphasized the maximum property for
each column. This is to be compared with (5.1), where the maximum is
outside the summation over m (one is only allowed to permute the rows
globally). This immediately implies the inequality w̃t(φ(pS)) 6 wt(pS). In
case of equality, the ordering of each column agrees, or equivalently the sa
are totally ordered, which means S ∈ PP(a, b, c). �

(Continuing the proof of Proposition 5.2.) Using the “straightening law”
[18, Thm. 14.6], the pS for S 6∈ PP(a, b, c), can be expressed as linear
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combinations of noncrossing ones modulo the Plücker relations:

(5.6) pS =
∑

T∈PP(a,b,c)

cT pT

Now pick T ∈ PP(a, b, c) such that wt(pT ) is minimal among the terms with
nonzero coefficients in the r.h.s. of (5.6). Applying φ to (5.6) and noting
that diagonal terms are all distinct for distinct T (see a similar argument in
the proof of [18, Thm. 14.16]), we find that the coefficient of the diagonal
term of φ(pT ) in φ(r.h.s. of (5.6)) is precisely cT (no compensation can
occur). Therefore it must also appear in the l.h.s. (and be equal to ±1), so
that

w̃t(φ(pS)) 6 w̃t(φ(pT )) = wt(pT )

We conclude that

wt(pS) < w̃t(φ(pS)) 6 wt(pT ) ∀ t : ct 6= 0

so that the initial term of (5.6) is pS .
It remains to show that in(P) is no larger than span(ps1 . . . psa ,

(s1, . . . , sa) 6∈ PP(a, b, c)). For this, we use the dimension count
dimH0(Xc×b; O(a)) = |PP(a, b, c)| explained at the beginning of Sec-
tion 5.1, and the second statement from Proposition 4.2. �

Consequently, we have a smaller presentation

0→M ′r → F ′r → H0 (CXc×b; p∗O(a)
)
→ 0

where

F ′r := span(ps1 . . . psa , (s1, . . . , sa) ∈ PP(a, b, c)).

5.2. Lozenge tilings and weights

We have seen in the previous section the appearance of the subset
PP(a, b, c) of increasing a-tuples from

([b+c]
b

)
. As we continue our degen-

eration, we shall see that it is intimately connected to the combinatorics
of lozenge tilings, which are one possible graphical description of elements
of PP(a, b, c). As shown on the top-right picture from Figure 1.2, they are
fillings of a a × b× c hexagon with lozenges (of unit edge length) in three
orientations. We shall use the following (redundant) coordinate system on
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such hexagons, based on an underlying Kagome lattice:

a

b
c

i=1

i=a+b

j=1

j=b+c

k=1

k=a+c

The blue (resp. red, green) lines are constant i (resp. j, k) curves. We have
the relation i− a+ k − j − 1/2 = 0.

Let us call lozenges “of type B”, “of type C”, and “of type
BC”. We notice that the center of a lozenge of type B has integer coordi-
nates (i, j), that of type C integer coordinates (j, k), and that of type BC
integer coordinates (i, k). We shall always use such coordinates for each

type of lozenge. On the example of Figure 1.2, the lozenges of type C
have coordinates (3, 4), (5, 5), (6, 5), (7, 5), (1, 1), (3, 2), (5, 3), (7, 4), listed in
English-reading order.
We record a few facts about the plane partitions, hexagons, dimers, and

rhombi. One can act on a plane partition by adding or removing a box,
which on the dimer configuration corresponds to rotating a 3-dimer hexagon
by 60◦. Hence the number of dimers in each orientation is constant, and
can be computed from the case of the empty plane partition; there are ac
dimers of type B, ab of type C, and bc of type BC. It is also easy to compute
the number of hexagons: if we replace (a, b, c) by (0, b+a, c+a), adding

(
a
2
)

on each side, the region becomes a parallelogram with (b+a−1)(c+a−1)
hexagons. Hence there are (b+a−1)(c+a−1)−2

(
a
2
)

= ab+ac+bc−a−b−c+1
hexagons.
With these conventions, the bijection from lozenge tilings to subsets in

PP(a, b, c) is to keep track of the j coordinates of every lozenge of type
C. More precisely, once we draw (as on the lower-left of Figure 1.2) paths
made of lozenges of type B and C, then the subset si, i = 1, . . . , a, records
the locations of down steps of path i indexed from bottom to top.
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Finally we introduce one more coordinate, called y, which is the vertical
coordinate of the center of any lozenge, where the lower left corner of the
hexagon has coordinate y = 1/2. With these conventions, the conversion
from (i, j, k) to y, effectively giving the y coordinate of the centers of the
three types of lozenges, is

yBi,j = 1
2j − (i− a) + 1

2(5.7)

yCj,k = k − 1
2j(5.8)

yBCi,k = k − (i− a) + 1
2(5.9)

We are now ready to introduce the weights of the variables Bi,j and Cj,k.
We define

wt(Bi,j) = (yBi,j)2 1 6 i 6 a+ b, 1 6 j 6 b+ c(5.10)
wt(Cj,k) = (yCj,k)2 1 6 j 6 b+ c, 1 6 k 6 a+ c(5.11)

With this we can define the Gröbner degeneration in(A) of the coordinate
ring A of the orbital variety defined by (4.4)–(4.6). We will not directly
determine a Gröbner basis for A; rather, it will be easiest to study in(A)
by its action on the summands of in(M ′r).

These weights (5.10) and (5.11), combined with the definition of wt(pS)
given in (5.1), also allow definition of the weight of an arbitrary monomial∏
Bi,j

∏
Cj,k pS in Fr as the sum of weights of its factors. For x ∈ Fr we

then define the initial form in(x) to be the sum of monomials of x for which
the function wt is minimal.

Theorem 5.4. — For S ∈ PP(a, b, c) with corresponding dimer con-
figuration DS , and d ∈ DS a dimer, we obtain a generator of in(M ′r) as
follows.

• If d lies in a lozenge of type B with center (i, j), then BijpS ∈
in(M ′r).

• If d lies in a lozenge of type C with center (j, k), then CjkpS ∈
in(M ′r).

• If d lies in a lozenge of type BC with center (i, k),
then (Bi,i+k−a−1Ci+k−a−1,k +Bi,i+k−aCi+k−a,k)pS ∈ in(M ′r).

Taken over all S and d ∈ DS , these monomial and binomial relations
generate the in(A)-submodule in(M ′r).

Showing that these generators are the leading forms of the generators
from Theorem 5.1 will occupy Sections 5.3–5.4. Then showing they actually
generate will come in Section 6.
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As discussed in Section 5.1, we are mostly interested in the generators
pS where S ∈ PP(a, b, c); we note that (5.1) can be rewritten, in that case,
as

(5.12) wt(ps1 . . . psa) =
∑

lozenges of type C
of S at (j, k)

(yCj,k)2, S = (s1 6 · · · 6 sa)

(note that the maximum is attained for the identity permutation, then
use (5.8)). This seems to break the symmetry between lozenges of type B
and those of type C; however it is not hard to show that

(5.13) wt(ps1 . . . psa) = const +
∑

lozenges of type B
of S at (i, j)

(yBi,j)2, S = (s1 6 · · · 6 sa)

where const is an irrelevant constant (depending only on a and c − b).
Equivalently, we have the two explicit expressions

wt(ps1 . . . psa) =
a∑

i=1

b∑

j=1

(
1
2si,j + i− j

)2
(5.14)

= const +
a∑

i=1

c∑

k=1

(
−1

2 s̄i,k + i+ k − 1
2

)2
(5.15)

To state our main result of the next two sections, we need some founda-
tional results on Gröbner bases of modules [8, §15]:

Proposition 5.5. — Let R > I be a polynomial ring and an ideal, with
quotient A := R/I. Fix also a partial term order on R’s monomials with
which to define Gröbner degenerations such as in(A) := R/in(I).
Let P be an indexing set, and M 6 AP an A-submodule, with pullback

M̃

��

� � �� RP

��
M
� � �� AP .

Then the R-module Rp/in(M̃) descends to an in(A)-module, and any
Gröbner basis for M̃ 6 RP descends to generating sets for M 6 Ap and
(stronger) for

in(M) := in(A)⊗R in(M̃) 6 in(A)⊗R RP ∼= in(A)P .

Proof. — The descent-of-basis claim is equivalent to the vanishing of
in(I)⊗R Rp/in(M̃), computable from

in(I ⊗R Rp/M̃) ∼= in(I ⊗R Ap/M) = in(0).
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For the first claim of generation, a Gröbner basis B for M̃ generates M̃ ,
hence descends to generates its quotient M . But to be Gröbner, it must
descend to generate in(M̃), of which in(M) is a quotient, giving the second
claim of generation. �

With this in mind, we can speak sensibly of Gröbner bases for submodules
of free A-modules, where A is presented as a quotient of a polynomial ring
(as our A is, in (4.4)–(4.6)).

While the B,C relations (4.10)–(4.11) define the module F ′r/M ′r, their
initial forms aren’t enough to generate in(M ′r); we need the BC relations
from (4.4) as well.
In fact, more detailed analysis (in Section 5.4) will show that we only

need a subset of these to produce a Gröbner basis, one for each dimer of
each dimer configuration.

5.3. The linear equations

We first discuss the equations (4.10) and (4.11), which are linear in the
variables Bi,j or Cj,k, multiplied by “spectator” monomials ps2 . . . psa as in
Theorem 5.1.
It is perhaps instructive to consider first the special case of a = 1. The

Plücker relations do not appear in that case, and the linear relations are
simply (4.10) and (4.11) without spectators.
Start with (4.10). The weights of its monomials are given by

wt(Bi,jps+\j)(5.16)

=
(

1
2j − (i− 1) + 1

2

)2
+

b∑

m=1

(
1
2((s+\j)m + 1−m)

)2

=
(

1
2j − i+ 3

2

)2
+

h−1∑

m=1

(
1
2(s+m + 1−m)

)2
j = s+,h

+
b+1∑

m=h+1

(
1
2s+,m + 2−m

)2
,

= κ1 +
(

1
2j − i+ 3

2

)2
+

h−1∑

m=1
(s+,m − 2m+ 1)−

(
1
2j + 2− h

)2

= κ2 − (i+ 1/2)j + hj −
h−1∑

m=1
s+,m
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where s+ is of cardinality b+1, and we order the elements of s+\j as usual,
(s+\j)1 < · · · < (s+\j)b. From the third line to the fourth line, we have
subtracted

∑
m

( 1
2s+,m + 2−m

)2, resulting in an irrelevant constant κ1
(which is independent of h or j). κ2 is another such constant.
We claim that (5.16) has a unique minimum at h = i, i.e., j = s+,i.

Indeed, compute the difference

wt(Bi,s+,h+1ps+\s+,h+1)−wt(Bi,s+,hps+\s+,h) = (h− i+ 1/2)(s+,h+1−s+,h)

which is negative for h 6 i− 1 and positive for h > i. We conclude that

(5.17) in


∑

j∈s+
Bi,jps+\j


 = Bi,s+,ips+\s+,i

We can repeat the analysis for (4.11):

(5.18) wt(Cj,kps−∪j)

= (k − j

2)2 +
b∑

m=1

(
1
2(s− ∪ j)m + 1−m

)2

= (k − j

2)2 +
j−h∑

m=1

(
1
2s−,m + 1−m

)2

+ (h− 1
2j)

2 +
b−1∑

m=j−h+1

(
1
2s−,m −m

)2
j = s̄−,h

= κ3 + 1
2j

2 − j(k + h) +
j−h∑

m=1
(s−,m − 2m+ 1)

= κ3 −
1
2j

2 + j(h− k) +
j−h∑

m=1
s−,m

and once again

wt(Cs̄−,h+1,kps−∪s̄−,h+1)−wt(Cs̄−,h,kps−∪s̄−,h) = (h−k+1/2)(s̄−,h+1−s̄−,h)

which is negative for h 6 k − 1 and positive for h > k, so that

(5.19) in


∑

j∈s̄−
Cj,kps−∪j


 = Cs̄−,k,kps−∪s̄−,k

Of course we could have made the reasoning even more similar to the
previous one by using (5.15) instead of (5.14).
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Results (5.17) and (5.19) both have a simple diagrammatic interpreta-
tion. Given s ∈

([b+c]
b

)
, we can draw the corresponding lozenge tiling:

a = 1, b = 3, c = 5, s = {4, 6, 7} :

There are exactly b + c lozenges of type B or C. Consider one of these
lozenges of type B. Its coordinates are (i, j) where j 6∈ s and i is one plus the
number of elements of s less than j. (For example, the fifth lozenge of type
B on the example has coordinates (2, 5).) Therefore, defining s+ = s ∪ j,
one has j = s+,i and one can naturally associate to it the initial term of an
equation as in (5.17) indexed by s+ and i. Similarly, to a lozenge of type
C, with coordinates (j, k), is naturally associated the initial term of (5.19)
with s− = s\j and j = s̄−,k.

We have found that to each s ∈
([b+c]

b

)
viewed as a lozenge tiling of a

1 × b × c hexagon, we can associate equations of the form psBi,j = 0 and
psCj,k = 0 where (i, j) (resp. (j, k)) runs over the coordinates of lozenges of
type B (resp. type C). We now wish to extend this conclusion to general a.
The difference from the a = 1 case is that we shall pick a subset of equations
to do so (with the implicit assumption, to be proven subsequently, that all
other equations are redundant after the degeneration).
Reversing the logic we now start, for a arbitrary, with an S ∈ PP(a, b, c)

viewed as a lozenge tiling, and one lozenge of type B at (i, j). In the NILP
representation of S, it corresponds to a certain path labelled ` (between
1 and a), with j ∈ s̄`. We pick among (4.10) the one with s+ = s` ∪ j,
and multiply it by

∏
`′ 6=` ps`′ . We now carefully evaluate the weights of the

various monomials in it.
The key observation is that from the definition (5.1) of the weight, we

can bound from below the weight of each monomial ps+\j′
∏
`′ 6=` ps`′ by

the expression w(s1, . . . , s`−1, s+\j′, s`+1, . . . , sa) (note the ordering); in
the particular case j′ = j, this bound is achieved because S ∈ PP(a, b, c).
At that stage we can do the exact same calculation as in the case a = 1;
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skipping the details, we find

w(s1, . . . , s`−1, s+\s+,h+1, s`+1, . . . , sa) + wt(Bi,s+,h+1)
− w(s1, . . . , s`−1, s+\s+,h, s`+1, . . . , sa)− wt(Bi,s+,h)

= (s+,h+1 − s+,h)(h− i+ 1/2 + a− `)
so that this function has a strict minimum at h = i+ a− `, and we easily
compute s+,h = j, thus obtaining

(5.20) in


∑

j′∈s+
Bi,j′ps+\j′

∏

`′ 6=`
ps`′


 = pSBi,j

The exact same reasoning applies to a lozenge of type C of S at (j, k)
(on the path labelled `); computing

w(s1, . . . , s`−1, s− ∪ s̄−,h+1, s`+1, . . . , sa) + wt(Cs̄−,h+1,k)
− w(s1, . . . , s`−1, s− ∪ s̄−,h, s`+1, . . . , sa)− wt(Cs̄−,h,k)

= (s̄−,h+1 − s̄−,h)(h− k − 1/2 + `)

leads to the initial term

(5.21) in


 ∑

j′∈s̄−
Cj′,kps−∪j′

∏

`′ 6=`
ps`′


 = pSCj,k

5.4. The quadratic equations

These are (4.4), which are equations of the support of µ∗σc×b, i.e., which
are true acting on any ps1 · · · psa . Once we apply the degeneration given by
weights (5.10) and (5.11), obvious minimization of the quadratic form in j
results in

in(pS(BC)i,k)

= pS





Bi,1C1,k i+k6 a+1
Bi,i+k−a−1Ci+k−a−1,k+Bi,i+k−aCi+k−a,k a+1<i+k <n+1
Bi,b+cCb+c,k i+k>n+1

Rather than keeping all these initial terms, we shall show that many
of them are redundant, i.e., can be derived from the initial terms (5.20)
and (5.21) of the linear equations. Because of Proposition 5.2, we may
always assume that S ∈ PP(a, b, c).
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Let us start with the first type, that is Bi,1C1,k, i+ k 6 a+ 1. If we look
at the j = 1 slice of a lozenge tiling (i.e., the leftmost vertical slice), we

find that it always consists, from bottom to top, of a series of lozenges

of type C, then a lozenge of type BC, then a series of lozenges of
type B. This means that among the initial terms of (5.20) and (5.21), we
have

C1,1, . . . , C1,i, Ba−i,1, . . . , B1,1

times pS for some i between 0 and a. This immediately implies that if
i+ k 6 a+ 1, one of Bi,1 or C1,k is found in this list.
Similarly, one can show that the last case Bi,b+cCb+c,k is redundant be-

cause of the form of the rightmost slice j = b+ c of any lozenge tiling.
Finally, consider the middle case. In order to study it, it is convenient to

go over to the dual picture of lozenge tilings, i.e., dimers, cf. the lower right
picture of Figure 1.2. According to the previous section, each non-horizontal
edge corresponds to a certain Bi,j or Cj,k depending on its orientation,
and this edge is occupied by a dimer precisely when that variable times
pS is the initial term of an equation. It is natural to associate to (BC)i,k,
a + 1 < i + k < n + 1, the location (i, k), which on this dual picture
corresponds to a certain horizontal edge. Now it is easy to see that the
two terms Bi,i+k−a−1Ci+k−a−1,k and Bi,i+k−aCi+k−a,k are precisely the
product of the variables attached to the edges adjacent to the horizontal
edge at either endpoint:

(BC)i,k
Bi,i+k−a

Ci+k−a,k

Ci+k−a−1,k

Bi,i+k−a−1

The dimer condition means that every vertex belongs to exactly one dimer.
This means that there are two scenarios:

• The horizontal edge is empty, and then at either endpoint one ad-
jacent edge must be occupied by a dimer, e.g.,

.

This immediately implies that the initial term associated to the
horizontal edge is redundant.
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• The horizontal edge is occupied:

,

which equivalently means that there is a lozenge of type BC at
(i, k). Then we decide to keep the corresponding initial term.

In the end, we see that a beautiful picture emerges: to each lozenge of the
tiling is associated exactly one initial term, either linear in two orientations
or quadratic in the last one (type BC). Note in the latter type, we get
binomials instead of only getting monomials, as we would in a generic
degeneration. This binomial behavior will lead to the appearance of certain
toric varieties, as we explain now.

6. The special fiber

We recall the notion of a shelling of a simplicial complex and explain
what modifications to it are necessary to describe the special fiber of our
degeneration. All the definitions in the next paragraph are standard; our
reference is [18, §1 and §13].
A collection ∆ ⊆ 2V of subsets of a “vertex set” V is a simplicial complex

if F ∈ ∆, G ⊆ F =⇒ G ∈ ∆. It has a corresponding union of coordinate
subspaces

SR(∆) :=
⋃

F∈∆
CF ⊆ CV

called its (affine) Stanley–Reisner scheme, and every such union S ⊆ CV
comes from a unique simplicial complex ∆(S) := {F ⊆ V : CV ⊆ S}. The
maximal elements of ∆ are called its facets; if they all have the same size
d+ 1 then ∆ is called pure of dimension d. A shelling of a pure simplicial
complex ∆ is an ordering F1, . . . , Fm of its facets such that {G ⊆ Fi :
∃ j < i, Fj ⊃ G} is again pure and of codimension 1 in Fi, for each i.
(Shellings only exist for nice-enough ∆; for example a union of two solid
triangles at a point is an unshellable complex.)
Let A := C[xv : v ∈ V ]

/
〈∏g∈G xg〉G/∈∆ be the Stanley–Reisner ring of

∆, the coordinate ring of SR(∆). Given a shelling of ∆, we can associate
a list of ring elements

ri :=
∏


xj ∈ Fi : Fi \ j ⊆

⋃

j<i

Fj




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and a filtration Mi := 〈ri, . . . , rm〉 6 A of the regular module M1 = A.
Then the following is straightforward:

Proposition 6.1. — Each summand of the A-module

grM1 :=
⊕

i6M

Mi/Mi+1

is a regular module over one component of A, i.e. Mi/Mi+1 = A · ri and
the annihilator ideals ann(ri) are the prime components of the zero ideal.

In this section we have a similar situation, but requiring three directions
of generalization:

• The module M1 is rank 1 and torsion-free, but not actually free.
• The ring A also has to degenerate; it is not just the module M1
that degenerates (to its associated graded).

• The components of the degenerate scheme Spec in(A) are still toric
varieties (5) and complete intersections, but aren’t quite coordinate
subspaces; while some of their defining equations are coordinates
(as in the Stanley–Reisner case), others are quadratic binomials
(a new phenomenon).

For S ∈ PP(a, b, c), let FS := in(A) · pS be the cyclic submodule of
in(F ′r)/in(M ′r) generated by the element pS . Since in(F ′r) is freely gener-
ated by the {pS} as an in(A)-module, the quotient in(F ′r)/in(M ′r) is the
sum

∑
S∈PP(a,b,c) FS . But much more is true:

Theorem 6.2. — The in(A)-module F ′r/in(M ′r) is the direct sum⊕
S∈PP(a,b,c) FS . Each FS is supported on a single component of Spec in(A),

and this gives a correspondence between PP(a, b, c) and the components of
Spec in(A).

The rest of the section is devoted to its proof, and to determination of
the individual FS . We will then use this computation to finish the proof
of Theorem 5.1, and more importantly, to pave the way to proving (in
Section 7) our Conjectures 1.3 and 1.4 in the c× b rectangle case.

6.1. The individual FS

Fix S ∈ PP(a, b, c) for the rest of this subsection, which we will usually
think of as a dimer configuration as in the Southeast picture in Figure 1.2.

(5)The equations defining toric varieties are binomial, but can be of high degree, and
toric varieties are very rarely complete intersections.
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Let H denote the set of hexagons in that picture, whose non-horizontal
edges we corresponded (in Section 5.2) with some of the B,C ring genera-
tors. We computed |H| = ab+ ac+ bc− a− b− c+ 1 in Section 5.2.

(5.20)–(5.21) and Section 5.4 show FS is a cyclic module over the ring

AS := C[Bi,j , Cj,k, ?i,k]
/〈Bi,j of type B in S

Cj,k of type C in S
Bi,i+k−a−1Ci+k−a−1,k+Bi,i+k−aCi+k−a,k of type BC in S

〉

who itself has (a+ b)(b+ c) + (b+ c)(c+ a) + (c+ a)(a+ b) generators, and
one relation for each dimer in S (a total of ab+ac+ bc, as recorded in Sec-
tion 5.2). More specifically, we have a natural map AS → in(A)/ ann(FS),
which we will soon show is an isomorphism. A key tool will be the following:

Proposition 6.3. — Call a generator of AS relevant if it appears on a
(non-horizontal) edge in the diagram of H (including the half-edges around
the boundary), but is not in S. There are |H|+(a+c−1)+2b−ac = ab+bc+b
relevant B generators, and similarly ac+ bc+ c relevant C generators. Let
A′S be the subring generated by those, suffering the bc many quadratic
binomial equations from the third group above.
LetH+ beH plus the partial hexagons around the outside, and L = ZH+ ,

the space of Z-valued functions on H+. Then A′S has an L-grading, where
the B or C generator corresponding to a non-horizontal edge γ is given
weight fγ ∈ L, defined by

fγ(h) =





+1 if h is the (partial) hexagon above γ
−1 if h is the (partial) hexagon below γ

0 otherwise.

Moreover, this grading is fine, meaning that its homogeneous components
are 1-dimensional.

Proof. — Each hexagon in H has a type B edge on its Northwest side,
which gives all the B edges except for the a+c−1 of them on the East and
Southeast, and 2b one-ended edges coming off the Northeast and Southwest
sides. Of those, there are ac in S we must remove. Flip left/right for the
type C edges statement.
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We have to check that the quadratic binomial relation coming from a
horizontal edge is L-homogeneous:

+
− =

+ − + +−

=
+− + + −

The exponent vector of a Laurent monomial m is a Z-valued function g
on H+’s nonhorizontal edges, vanishing on S (and on the half-edges around
the boundary). Each horizontal dimer γ ∈ S gives a relation of the form
Bi,i+k−a−1Ci+k−a−1,k/Bi,i+k−aCi+k−a,k = −1, whose exponent vector we
call rγ . To show the grading is fine (as could have been predicted from [9]),
we need to show that

f :=
∑

edges γ
g(γ)fγ = 0

implies that g is in the span of the (rγ : γ ∈ S horizontal).
We can use the (rγ) to modify g as follows, from left to right: for each

horizontal γ ∈ S, connected to some B-edge γ′ on its West side (necessarily
not in S), add g(γ′)rγ to g thereby making the new value at γ′ be 0. Now
we can assume that g vanishes not only on S, but on each B-edge to the
Southwest of a horizontal S-edge. In short, if a B-edge is has nonzero g-
value, then the C-edge below it has zero g-value (since it’s in S), unless
both are on the right boundary of H (so don’t have a full horizontal edge
giving an rγ to use).
The displayed equation above says that in each partial hexagon h ∈ H+,

the sum of the NW and NE g-values equals the sum of the SW and SE.
Each partial hexagon h on the West side of H+ (there are initially a+ 1 of
them) has only NE and SE contributors to f(h), and we’ve just shown that
one of them vanishes. Hence the other one does too. Rip off this vertical line
of (initially a many) hexagons from the West side and repeat the argument.
The new shape will again be a hexagon of hexagons, albeit not with edge-
lengths (a, b, c, a, b, c), but that doesn’t affect the argument. �

In particular,

dimA′S > #generators−#relations
= (ab+ bc+ b) + (ac+ bc+ c)− bc = ab+ ac+ bc+ b+ c
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with equality iff it is a complete intersection of those bc quadric hypersur-
faces. So now we compute its dimension (to show that this inequality is
indeed strict).
Let LS 6 L be the set of actual L-gradings of monomials occurring in A′S .

To analyze LS , we first consider its perp (with respect to the dot product
on L where the hexagon vectors {~vh : h ∈ H+} are orthonormal).
Proposition 6.4.
(1) dimL = ab+ ac+ bc+ a+ b+ c+ 1.
(2) LS is a cone (i.e. closed under +), and A′S is its monoid algebra, a

domain of dimension dimLS .
(3) f ∈ L⊥S iff it is constant on the regions of S∪{all horizontal edges}.
(4) Hence dimL⊥S = a+ 1 and dimLS = ab+ ac+ bc+ b+ c.

(5) A′S and AS are complete intersections, of degree 2bc.
Proof.
(1) The number of partial hexagons in the H+ for (a, b, c) is the number

of hexagons that H would have for (a + 1, b + 1, c + 1), namely
(a+1)(b+1)+(a+1)(c+1)+(b+1)(c+1)−(a+1)−(b+1)−(c+1)+1
or ab+ ac+ bc+ a+ b+ c+ 1.

(2) The binomial relations definingA′S don’t involve any of the variables
being killed in the linear relations. So any monomial m in the non-
killed variables must be nonzero in A′S , since each binomial relation
just lets us rewrite m as another monomial (up to sign). Hence if
f1, f2 ∈ L come from nonzero monomials m1,m2, then m1m2 is
nonzero also and has L-grading f1 + f2.
By [9], if A′S were not a domain then it would satisfy a relation

m(p− q) = 0 where m, p, q are monomials. But then mp,mq would
be monomials with the same L-grading, as was just now forbidden
in Proposition 6.3. The dimension statement is standard in toric
geometry [10].

(3) Each non-horizontal dimer γ not in S gives a nonvanishing gener-
ator of AS , hence a vector fγ ∈ L. To be perpendicular to that,
f ∈ L⊥S needs to take on the same value on the two hexagons that
would have been separated by γ.

(4) Looking at the bottom row of Figure 1.2, we notice that including all
horizontal edges has the same topological effect as contracting them
all to produce a NILP configuration out of a dimer configuration. In
particular, since there are a NILPs, the number of regions separated
by occupied edges is obviously a+1. Then subtract this from dimL

computed in (1).
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(5) The dimension of A′S is at least ab+ ac+ bc+ b+ c, as we checked
just before the proposition. Since by parts (1,4) that is the actual
dimension of A′S , it is a complete intersection, so its degree is the
product of the degrees of its defining equations. There is one de-
gree 2 equation for each horizontal dimer, of which there are bc (as
seen in Section 5.2). Since AS is A′S tensor a polynomial ring, it too
is a complete intersection of this degree 2bc. �

6.2. The total initial module

So far we have a surjection
⊕

S∈PP(a,b,c)

AS � in(F ′r)/in(M ′r)

(aS ∈ AS : S ∈ PP(a, b, c)) 7→
∑

S∈PP(a,b,c)

aSpS

that we need to show is an isomorphism. We will use a module-theoretic
extension of the argument in [13, Lem. 1.7.5]:

Lemma 6.5. — Both sides of the surjection above are graded modules
over the polynomial ring C[Bi,j , Cj,k, ?i,k]. Hence we can speak of their
degrees, and since their supports are of the same dimension (namely ab+
ac+ bc), the surjection gives an inequality on degrees. If the map is not an
isomorphism, then this inequality on degrees is strict.

Proof. — As with (quotients by) ideals, the degree of a graded module
M is defined as the leading coefficient of its Hilbert polynomial (times
dim(supp(M))!). There is a minor annoyance that the map defined above
only becomes a graded map if we shift the grading on each AS summand
by deg(pS), but shifting the argument of the Hilbert polynomial doesn’t
change the leading term, so we can ignore this subtlety.

If this map has an element (kS ∈ AS)S∈PP(a,b,c) 6= 0 in its kernel K,
then the kernel contains the module

⊕
ASkS . Since each AS is a domain

by Proposition 6.4, this submodule of the kernel again has the dimension
ab+ ac+ bc, so deg(RHS) = deg(LHS)− deg(K) < deg(LHS). �

Proofs of Theorems 6.2, 5.1, and 5.4. — We already knew that
F ′r/in(M ′r) is generated by (FS), i.e. is a quotient of

⊕
FS , and that each

FS is supported only on the component SpecAS of SpecA.
By Proposition 4.3, the degree of AS , hence also of its free rank 1 module

FS , is 2bc. So
⊕
FS has degree 2bc|PP(a, b, c)|.
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Meanwhile its quotient F ′r/in(M ′r) is a degeneration of a rank 1 sheaf
over SpecA, which we calculated to be 2bc|PP(a, b, c)| in Proposition 4.3.
Now we use Lemma 6.5 to know that the map

⊕
FS � F ′r/in(M ′r) is an

isomorphism. This completes the proof of Theorem 6.2.
To establish the Gröbnerness of Theorems 5.1 and 5.4, we need to know

that the family doesn’t have any components supported only on the special
fiber. But we’ve determined the components (FS) of the special fiber, and
if we cut any of them down the degree would decrease below that of the
general fiber. �

7. Conclusion

We now use the results of the last two sections, in particular Theo-
rems 5.1, 6.2 and Proposition 6.4, to prove the remaining two Conjec-
tures 1.3 and 1.4 (or more precisely, the equivalent Conjecture 1.3′ and 3.2),
in the (a, b, c) case.
First, we consider Conjecture 3.2.

7.1. Polynomiality and Conjecture 3.2

According to Theorem 5.1, if we wish to compute the Hilbert series of
µ∗σc×b, we can instead use that of the degenerated A-module F ′r/M ′r. The
latter, according to Theorem 6.2, is a direct sum

⊕
S∈PP(a,b,c) FS where

each FS is free of rank 1 over a complete intersection AS .
As a result, we have the following formula:

(7.1) µ∗[σc×b] =
∏

16i<j6a+b
or

a+b+16i<j6a+2b+c
or

a+2b+c+16i<j62n

(1− t zi/zj)
∑

S∈PP(a,b,c)

∏

i∈s`,
16`6a

z−1
i

∏

lozenges (i, k)
of type BC of S

(1− t2zi/zk+a+2b+c)
∏

lozenges (i, j)
of type B of S

(1− t zi/zj+a+b)

∏

lozenges (j, k)
of type C of S

(1− t zj+a+b/zk+a+2b+c)

where the prefactors correspond to the 0s of M , cf. (4.9), the monomial is
the weight of the generator pS of FS , and the other factors come from the
various equations of AS .
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Now we recall Theorem 1.6, namely that lozenge tilings of a a × b × c
hexagon are in bijection with FPLs with connectivity (a, b, c). Therefore,
(7.1) is of the form conjectured in Conjecture 3.2.
In order for the monomials mf to have the right form, we need to have

(7.2) m̃−1
r = t−bc/2

a+b∏

i=1
zi−1
i

b+c∏

j=1
za+j−1
j+a+b

a+c∏

k=1
zb+k−1
k+a+2b+c

and carefully rearranging the monomials, we find

(7.3) m̃−1
r µ∗[σc×b] =

∏

16i<j6a+b
or a+b+16i<j6a+2b+c
or a+2b+c+16i<j62n

(zj − t zi)

∑

S∈PP(a,b,c)

∏

lozenges (i, k)
of type BC of S

t−1/2(zk+a+2b+c − t2zi)

∏

lozenges (i, j)
of type B of S

(zj+a+b − t zi)
∏

lozenges (j, k)
of type C of S

(zk+a+2b+c − t zj+a+b)

which fits precisely with the form of the monomials in Conjecture 1.4.
We also find

Corollary 7.1.

m̃−1
r µ∗[σc×b] =

∏

16i<j6a+b
or

a+b+16i<j6a+2b+c
or

a+2b+c+16i<j62n

(t−1/2zj − t1/2zi) Φr

where Φr is a symmetric polynomial in the {z1, . . . , za+b}, the {za+b+1, . . . ,

za+2b+c}, and the {za+2b+c+1, . . . , z2n}.

Proof. — (compare with [4, Thm. 1]). The polynomiality (as opposed to
Laurent polynomiality) is explicit in (7.3). The symmetry stems from the
fact that π∗[σc×b], the pushforward to a point of a GL(a+ b)×GL(b+ c)×
GL(c+a)-equivariant sheaf, possesses the required symmetry, the prefactor
coming from (3.5) and (7.2). �

Now we move on to Conjecture 1.3. It should be noted that general equi-
variant localization arguments allow to show that Conjecture 1.1 implies
Conjecture 1.3 without any need to use Gröbner degenerations. However,
in the case (a, b, c), is simpler to prove Conjecture 1.3′ directly using the
degeneration, as we show now.
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7.2. Wheel condition, specialization and Conjecture 1.3′

Given 1 6 i1 < i2 < i3 6 N , we investigate the specialization zi` = t`−1z,
` = 1, 2, 3, of m̃−1

r µ∗[σr]. If two of the indices i1, i2, i3 fall in the same
interval {1, . . . , a+ b}, {a+ b+ 1, . . . , a+ 2b+ c}, {a+ 2b+ c+ 1, . . . , 2n},
then according to Corollary 7.1, the prefactor of m̃−1

r µ∗[σr] vanishes. Now
assume i1 = i, i2 = j + a + b, i3 = a + 2b + c + k, 1 6 i 6 a + b,
1 6 j 6 b + c, 1 6 k 6 a + c. With the notation of Corollary 7.1, due to
the symmetry of Φr, we can choose i, j, k as we wish and we may as well
assume j = i + k − a− 1. Now in each plane partition appearing in (7.3),
there must be a lozenge of type B at (i, j), of type C at (j, k) or of type
BC at (i, k) (corresponding to the fact that one of the equations Bi,j = 0,
Cj,k = 0 or (BC)i,k = 0 must be satisfied). Therefore Φr vanishes, and we
conclude that m̃−1

r µ∗[σr] satisfies the wheel condition of Theorem 1.2.
Next we investigate the “dual basis” specializations of the same theorem.

Pick s ∈ LP (N) and set zi = t±1/2 depending on whether i ∈ s or not. Be-
cause of the same prefactors in Corollary 7.1, if a t−1/2 occurs before a t1/2
in each of the three same intervals mentioned above, the specialization is
zero. Furthermore, s ∈ LP (N) implies that all these specializations satisfy
the “Dyck path” condition that in any sequence (z1, . . . , z`), ` = 1, . . . , N ,
there must be more t−1/2 than t1/2. This leaves the unique possibility

(z1, . . . , zN )

= (t−1/2, . . . , t−1/2
︸ ︷︷ ︸

a+b

, t1/2, . . . , t1/2︸ ︷︷ ︸
b

, t−1/2, . . . , t−1/2
︸ ︷︷ ︸

c

, t1/2, . . . , t1/2︸ ︷︷ ︸
a+c

)

which is exactly the case s = r. In the sum of (7.3), a single term survives,
corresponding to the “full” lozenge tiling of the type

and we compute, after cancellations of various powers of t1/2:

m̃−1
r µ∗[σr]|specialization above = (1− t)n(n−1)(t1/2 + t−1/2)bc
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which means µ∗[σr] = (1− t)n(n−1)m̃rΨr, thus proving Conjecture 1.3′.
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