Dans cet article, nous introduisons les groupes d’holonomie horizontale associés à un sous-fibré du fibré tangent d’une variété différentielle munie d’une connexion linéaire. Ces groupes sont construits comme l’holonomie par le transport parallèle (pour la connexion) uniquement le long des lacets tangents à . Nous faisons une étude détaillée de ces groupes et donnons en particulier des analogues des théorèmes d’Ambrose–Singer et Ozeki sous une hypothèse d’équirégularité du sous-fibré . D’autre part nous appliquons l’holonomie horizontale à l’étude de problèmes de feuilletages et obtenons ainsi des conditions nécessaires et suffisantes pour que les feuilles d’un feuilletage donné soient (a) totalement géodésiques, ou (b) les fibres d’un fibré principal. Le sous-fibré est choisi comme le complément orthogonal des feuilles dans le cas (a), et comme la connexion principale dans le cas (b).
We introduce horizontal holonomy groups, which are groups defined using parallel transport only along curves tangent to a given subbundle of the tangent bundle. We provide explicit means of computing these holonomy groups by deriving analogues of Ambrose–Singer’s and Ozeki’s theorems. We then give necessary and sufficient conditions in terms of the horizontal holonomy groups for existence of solutions of two problems on foliated manifolds: determining when a foliation can be either (a) totally geodesic or (b) endowed with a principal bundle structure. The subbundle plays the role of an orthogonal complement to the leaves of the foliation in case (a) and of a principal connection in case (b).
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3265
Keywords: holonomy, totally geodesic foliations, principal connections
Mot clés : l’holonomie, des feuilletages totalement géodésiques, des connexions principals
Chitour, Yacine 1 ; Grong, Erlend 2, 3 ; Jean, Frédéric 4 ; Kokkonen, Petri 5
@article{AIF_2019__69_3_1047_0, author = {Chitour, Yacine and Grong, Erlend and Jean, Fr\'ed\'eric and Kokkonen, Petri}, title = {Horizontal holonomy and foliated manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1047--1086}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {3}, year = {2019}, doi = {10.5802/aif.3265}, zbl = {07067426}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3265/} }
TY - JOUR AU - Chitour, Yacine AU - Grong, Erlend AU - Jean, Frédéric AU - Kokkonen, Petri TI - Horizontal holonomy and foliated manifolds JO - Annales de l'Institut Fourier PY - 2019 SP - 1047 EP - 1086 VL - 69 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3265/ DO - 10.5802/aif.3265 LA - en ID - AIF_2019__69_3_1047_0 ER -
%0 Journal Article %A Chitour, Yacine %A Grong, Erlend %A Jean, Frédéric %A Kokkonen, Petri %T Horizontal holonomy and foliated manifolds %J Annales de l'Institut Fourier %D 2019 %P 1047-1086 %V 69 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3265/ %R 10.5802/aif.3265 %G en %F AIF_2019__69_3_1047_0
Chitour, Yacine; Grong, Erlend; Jean, Frédéric; Kokkonen, Petri. Horizontal holonomy and foliated manifolds. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1047-1086. doi : 10.5802/aif.3265. https://aif.centre-mersenne.org/articles/10.5802/aif.3265/
[1] Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer, 2004, xiv+412 pages | DOI | MR | Zbl
[2] A theorem on holonomy, Trans. Am. Math. Soc., Volume 75 (1953), pp. 428-443 | DOI | MR | Zbl
[3] Curvature-dimension estimates for the Laplace–Beltrami operator of a totally geodesic foliation, Nonlinear Anal., Theory Methods Appl., Volume 126 (2015), pp. 159-169 | DOI | MR | Zbl
[4] A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality, Math. Ann., Volume 358 (2014) no. 3-4, pp. 833-860 | DOI | MR | Zbl
[5] Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, J. Eur. Math. Soc., Volume 19 (2017) no. 1, pp. 151-219 | DOI | MR | Zbl
[6] Transverse Weitzenböck formulas and curvature dimension inequalities on Riemannian foliations with totally geodesic leaves, Commun. Anal. Geom., Volume 24 (2016) no. 5, pp. 913-937 | DOI | MR | Zbl
[7] The Tangent Space in sub-Riemannian Geometry, Sub-Riemannian Geometry (Progress in Mathematics), Birkhäuser, 1996, pp. 1-78 | MR | Zbl
[8] Laplacians and Riemannian submersions with totally geodesic fibres, Ill. J. Math., Volume 26 (1982) no. 2, pp. 181-200 | MR | Zbl
[9] de Rham decomposition theorems for foliated manifolds, Ann. Inst. Fourier, Volume 33 (1983) no. 2, pp. 183-198 | DOI | MR | Zbl
[10] Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations, Q. J. Math., Oxf. II. Ser., Volume 35 (1984) no. 140, pp. 383-392 | DOI | MR | Zbl
[11] Une obstruction géométrique à l’existence de feuilletages de codimension totalement géodésiques, J. Differ. Geom., Volume 16 (1981) no. 4, pp. 675-684 | MR | Zbl
[12] Géométrie globale des feuilletages totalement géodésiques, C. R. Math. Acad. Sci. Paris, Volume 297 (1983) no. 9, pp. 525-527 | MR | Zbl
[13] A general description of totally geodesic foliations, Tôhoku Math. J., Volume 38 (1986) no. 1, pp. 37-55 | DOI | MR | Zbl
[14] Symmetries of the rolling model, Math. Z., Volume 281 (2015) no. 3-4, pp. 783-805 | DOI | MR | Zbl
[15] Rolling of manifolds and controllability in dimension three, Mém. Soc. Math. Fr., Nouv. Sér. (2016) no. 147, p. iv+162 | MR | Zbl
[16] Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., Volume 117 (1939), pp. 98-105 | MR | Zbl
[17] Decompositions of diffusion operators and related couplings, Stochastic analysis and applications 2014 (Springer Proceedings in Mathematics & Statistics), Volume 100, Springer, 2014, pp. 283-306 | DOI | MR | Zbl
[18] Holonomy of sub-Riemannian manifolds, Int. J. Math., Volume 8 (1997) no. 3, pp. 317-344 | DOI | MR | Zbl
[19] Horizontal path spaces and Carnot-Carathéodory metrics., Pac. J. Math., Volume 161 (1993) no. 2, pp. 255-286 | MR | Zbl
[20] Global controllability by nice controls, Nonlinear controllability and optimal control (Pure and Applied Mathematics), Volume 133, Marcel Dekker, 1990, pp. 33-79 | MR | Zbl
[21] Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part I, Math. Z., Volume 282 (2016) no. 1-2, pp. 99-130 | DOI | MR | Zbl
[22] Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part II, Math. Z., Volume 282 (2016) no. 1-2, pp. 131-164 | DOI | MR | Zbl
[23] Horizontal holonomy for affine manifolds, J. Dyn. Control Syst., Volume 22 (2016) no. 3, pp. 413-440 | DOI | MR | Zbl
[24] A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Am. Math. Soc., Volume 11 (1960), pp. 236-242 | DOI | MR | Zbl
[25] Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning, SpringerBriefs in Mathematics, Springer, 2014 | DOI | MR | Zbl
[26] Laplacian on a totally geodesic foliation, J. Geom., Volume 60 (1997) no. 1-2, pp. 74-79 | DOI | MR | Zbl
[27] Foundations of differential geometry. Vol I, Interscience Publishers, 1963, xi+329 pages | MR | Zbl
[28] Natural operations in differential geometry, Springer, 1993, vi+434 pages | DOI | MR | Zbl
[29] Generic distributions and Lie algebras of vector fields, J. Differ. Equations, Volume 103 (1993) no. 2, pp. 387-393 | DOI | MR | Zbl
[30] Nearly Kähler geometry and Riemannian foliations, Asian J. Math., Volume 6 (2002) no. 3, pp. 481-504 | DOI | MR | Zbl
[31] Infinitesimal holonomy groups of bundle connections, Nagoya Math. J., Volume 10 (1956), pp. 105-123 | DOI | MR | Zbl
[32] On joining any two points of a completely nonholonomic space by an admissible line, Math. Ann., Volume 3 (1938), pp. 83-94
[33] Foliated manifolds with bundle-like metrics, Ann. Math., Volume 69 (1959), pp. 119-132 | DOI | MR | Zbl
[34] Formes différentielles sur les variétés de contact, J. Differ. Geom., Volume 39 (1994) no. 2, pp. 281-330 | DOI | MR | Zbl
[35] Homotopy properties of the space of trajectories of a completely nonholonomic differential system, Dokl. Akad. Nauk SSSR, Volume 314 (1990) no. 6, pp. 1336-1340 | MR | Zbl
[36] A foliation of geodesics is characterized by having no “tangent homologies”, J. Pure Appl. Algebra, Volume 13 (1978) no. 1, pp. 101-104 | DOI | MR | Zbl
Cité par Sources :