Horizontal holonomy and foliated manifolds
[Holonomie horizontale et variétés feuilletées]
Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1047-1086.

Dans cet article, nous introduisons les groupes d’holonomie horizontale associés à un sous-fibré D du fibré tangent d’une variété différentielle M munie d’une connexion linéaire. Ces groupes sont construits comme l’holonomie par le transport parallèle (pour la connexion) uniquement le long des lacets tangents à D. Nous faisons une étude détaillée de ces groupes et donnons en particulier des analogues des théorèmes d’Ambrose–Singer et Ozeki sous une hypothèse d’équirégularité du sous-fibré D. D’autre part nous appliquons l’holonomie horizontale à l’étude de problèmes de feuilletages et obtenons ainsi des conditions nécessaires et suffisantes pour que les feuilles d’un feuilletage donné soient (a) totalement géodésiques, ou (b) les fibres d’un fibré principal. Le sous-fibré D est choisi comme le complément orthogonal des feuilles dans le cas (a), et comme la connexion principale dans le cas (b).

We introduce horizontal holonomy groups, which are groups defined using parallel transport only along curves tangent to a given subbundle D of the tangent bundle. We provide explicit means of computing these holonomy groups by deriving analogues of Ambrose–Singer’s and Ozeki’s theorems. We then give necessary and sufficient conditions in terms of the horizontal holonomy groups for existence of solutions of two problems on foliated manifolds: determining when a foliation can be either (a) totally geodesic or (b) endowed with a principal bundle structure. The subbundle D plays the role of an orthogonal complement to the leaves of the foliation in case (a) and of a principal connection in case (b).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3265
Classification : 53C29, 53C03, 53C12
Keywords: holonomy, totally geodesic foliations, principal connections
Mot clés : l’holonomie, des feuilletages totalement géodésiques, des connexions principals

Chitour, Yacine 1 ; Grong, Erlend 2, 3 ; Jean, Frédéric 4 ; Kokkonen, Petri 5

1 Laboratoire des Signaux et Systèmes (L2S) Supélec 3 rue Joliot-Curie Université Paris XI 91192 Gif-sur-Yvette (France)
2 Laboratoire des Signaux et Systèmes (L2S) Supélec Université Paris-Sud CNRS, Université Paris-Saclay 3 rue Joliot-Curie 91192 Gif-sur-Yvette (France)
3 and Department of Mathematics University of Bergen P. O. Box 7803 5020 Bergen, (Norway)
4 UMA, ENSTA ParisTech Université Paris-Saclay 828 bd des Maréchaux 91762 Palaiseau (France)
5 Helsinki (Finland)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_3_1047_0,
     author = {Chitour, Yacine and Grong, Erlend and Jean, Fr\'ed\'eric and Kokkonen, Petri},
     title = {Horizontal holonomy and foliated manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {1047--1086},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {3},
     year = {2019},
     doi = {10.5802/aif.3265},
     zbl = {07067426},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3265/}
}
TY  - JOUR
AU  - Chitour, Yacine
AU  - Grong, Erlend
AU  - Jean, Frédéric
AU  - Kokkonen, Petri
TI  - Horizontal holonomy and foliated manifolds
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 1047
EP  - 1086
VL  - 69
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3265/
DO  - 10.5802/aif.3265
LA  - en
ID  - AIF_2019__69_3_1047_0
ER  - 
%0 Journal Article
%A Chitour, Yacine
%A Grong, Erlend
%A Jean, Frédéric
%A Kokkonen, Petri
%T Horizontal holonomy and foliated manifolds
%J Annales de l'Institut Fourier
%D 2019
%P 1047-1086
%V 69
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3265/
%R 10.5802/aif.3265
%G en
%F AIF_2019__69_3_1047_0
Chitour, Yacine; Grong, Erlend; Jean, Frédéric; Kokkonen, Petri. Horizontal holonomy and foliated manifolds. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 1047-1086. doi : 10.5802/aif.3265. https://aif.centre-mersenne.org/articles/10.5802/aif.3265/

[1] Agrachev, Andrei A.; Sachkov, Yuri L. Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, 87, Springer, 2004, xiv+412 pages | DOI | MR | Zbl

[2] Ambrose, Warren; Singer, Isadore M. A theorem on holonomy, Trans. Am. Math. Soc., Volume 75 (1953), pp. 428-443 | DOI | MR | Zbl

[3] Baudoin, Fabrice; Bonnefont, Michel Curvature-dimension estimates for the Laplace–Beltrami operator of a totally geodesic foliation, Nonlinear Anal., Theory Methods Appl., Volume 126 (2015), pp. 159-169 | DOI | MR | Zbl

[4] Baudoin, Fabrice; Bonnefont, Michel; Garofalo, Nicola A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality, Math. Ann., Volume 358 (2014) no. 3-4, pp. 833-860 | DOI | MR | Zbl

[5] Baudoin, Fabrice; Garofalo, Nicola Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, J. Eur. Math. Soc., Volume 19 (2017) no. 1, pp. 151-219 | DOI | MR | Zbl

[6] Baudoin, Fabrice; Kim, Bumsik; Wang, Jing Transverse Weitzenböck formulas and curvature dimension inequalities on Riemannian foliations with totally geodesic leaves, Commun. Anal. Geom., Volume 24 (2016) no. 5, pp. 913-937 | DOI | MR | Zbl

[7] Bellaïche, André The Tangent Space in sub-Riemannian Geometry, Sub-Riemannian Geometry (Progress in Mathematics), Birkhäuser, 1996, pp. 1-78 | MR | Zbl

[8] Bérard-Bergery, Lionel; Bourguignon, Jean-Pierre Laplacians and Riemannian submersions with totally geodesic fibres, Ill. J. Math., Volume 26 (1982) no. 2, pp. 181-200 | MR | Zbl

[9] Blumenthal, Robert A.; Hebda, James J. de Rham decomposition theorems for foliated manifolds, Ann. Inst. Fourier, Volume 33 (1983) no. 2, pp. 183-198 | DOI | MR | Zbl

[10] Blumenthal, Robert A.; Hebda, James J. Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations, Q. J. Math., Oxf. II. Ser., Volume 35 (1984) no. 140, pp. 383-392 | DOI | MR | Zbl

[11] Brito, Fabiano Gustavo Braga Une obstruction géométrique à l’existence de feuilletages de codimension 1 totalement géodésiques, J. Differ. Geom., Volume 16 (1981) no. 4, pp. 675-684 | MR | Zbl

[12] Cairns, Grant Géométrie globale des feuilletages totalement géodésiques, C. R. Math. Acad. Sci. Paris, Volume 297 (1983) no. 9, pp. 525-527 | MR | Zbl

[13] Cairns, Grant A general description of totally geodesic foliations, Tôhoku Math. J., Volume 38 (1986) no. 1, pp. 37-55 | DOI | MR | Zbl

[14] Chitour, Yacine; Godoy Molina, Mauricio; Kokkonen, Petri Symmetries of the rolling model, Math. Z., Volume 281 (2015) no. 3-4, pp. 783-805 | DOI | MR | Zbl

[15] Chitour, Yacine; Kokkonen, Petri Rolling of manifolds and controllability in dimension three, Mém. Soc. Math. Fr., Nouv. Sér. (2016) no. 147, p. iv+162 | MR | Zbl

[16] Chow, Wei-Liang Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., Volume 117 (1939), pp. 98-105 | MR | Zbl

[17] Elworthy, David Decompositions of diffusion operators and related couplings, Stochastic analysis and applications 2014 (Springer Proceedings in Mathematics & Statistics), Volume 100, Springer, 2014, pp. 283-306 | DOI | MR | Zbl

[18] Falbel, Elisha; Gorodski, Claudio; Rumin, Michel Holonomy of sub-Riemannian manifolds, Int. J. Math., Volume 8 (1997) no. 3, pp. 317-344 | DOI | MR | Zbl

[19] Ge, Zhong Horizontal path spaces and Carnot-Carathéodory metrics., Pac. J. Math., Volume 161 (1993) no. 2, pp. 255-286 | MR | Zbl

[20] Grasse, Kevin A.; Sussmann, Hector J. Global controllability by nice controls, Nonlinear controllability and optimal control (Pure and Applied Mathematics), Volume 133, Marcel Dekker, 1990, pp. 33-79 | MR | Zbl

[21] Grong, Erlend; Thalmaier, Anton Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part I, Math. Z., Volume 282 (2016) no. 1-2, pp. 99-130 | DOI | MR | Zbl

[22] Grong, Erlend; Thalmaier, Anton Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part II, Math. Z., Volume 282 (2016) no. 1-2, pp. 131-164 | DOI | MR | Zbl

[23] Hafassa, Boutheina; Mortada, Amina; Chitour, Yacine; Kokkonen, Petri Horizontal holonomy for affine manifolds, J. Dyn. Control Syst., Volume 22 (2016) no. 3, pp. 413-440 | DOI | MR | Zbl

[24] Hermann, Robert A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Am. Math. Soc., Volume 11 (1960), pp. 236-242 | DOI | MR | Zbl

[25] Jean, Frédéric Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning, SpringerBriefs in Mathematics, Springer, 2014 | DOI | MR | Zbl

[26] Kang, Tae Ho; Pak, Hong Kyung; Pak, Jin Suk Laplacian on a totally geodesic foliation, J. Geom., Volume 60 (1997) no. 1-2, pp. 74-79 | DOI | MR | Zbl

[27] Kobayashi, Shoshichi; Nomizu, Katsumi Foundations of differential geometry. Vol I, Interscience Publishers, 1963, xi+329 pages | MR | Zbl

[28] Kolář, Ivan; Michor, Peter W.; Slovák, Jan Natural operations in differential geometry, Springer, 1993, vi+434 pages | DOI | MR | Zbl

[29] Montgomery, Richard Generic distributions and Lie algebras of vector fields, J. Differ. Equations, Volume 103 (1993) no. 2, pp. 387-393 | DOI | MR | Zbl

[30] Nagy, Paul-Andi Nearly Kähler geometry and Riemannian foliations, Asian J. Math., Volume 6 (2002) no. 3, pp. 481-504 | DOI | MR | Zbl

[31] Ozeki, Hideki Infinitesimal holonomy groups of bundle connections, Nagoya Math. J., Volume 10 (1956), pp. 105-123 | DOI | MR | Zbl

[32] Rashevskiĭ, Pëtr K. On joining any two points of a completely nonholonomic space by an admissible line, Math. Ann., Volume 3 (1938), pp. 83-94

[33] Reinhart, Bruce L. Foliated manifolds with bundle-like metrics, Ann. Math., Volume 69 (1959), pp. 119-132 | DOI | MR | Zbl

[34] Rumin, Michel Formes différentielles sur les variétés de contact, J. Differ. Geom., Volume 39 (1994) no. 2, pp. 281-330 | DOI | MR | Zbl

[35] Sarychev, Andrei V. Homotopy properties of the space of trajectories of a completely nonholonomic differential system, Dokl. Akad. Nauk SSSR, Volume 314 (1990) no. 6, pp. 1336-1340 | MR | Zbl

[36] Sullivan, Dennis A foliation of geodesics is characterized by having no “tangent homologies”, J. Pure Appl. Algebra, Volume 13 (1978) no. 1, pp. 101-104 | DOI | MR | Zbl

Cité par Sources :