[Sur la cohomologie quantique des grassmanniennes de droites isotropes, le déploiement de singularités de type et les collections de Lefschetz exceptionnelles.]
Dans cet article, nous nous intéressons au gros anneau de cohomologie quantique de , la grassmanienne symplectique des droites isotropes. Nous montrons que cet anneau est régulier et en déduisons par « lissité générique » une preuve conceptuelle de la semi-simplicité générique du gros anneau de cohomologie quantique de . Par ailleurs, par un résultat général de Hertling, cette régularité donne une description de cet anneau en termes de singularités isolées d’hypersurfaces et nous montrons que les singularités qui apparaissent sont de type . La conjecture de symétrie miroir homologique prédit l’existence de suites exceptionnelles très spéciales dans la catégorie dérivée des faisceaux cohérents de . L’existence de telles collections est démontrée en appendice par Alexander Kuznetsov.
The subject of this paper is the big quantum cohomology rings of symplectic isotropic Grassmannians . We show that these rings are regular. In particular, by “generic smoothness”, we obtain a conceptual proof of generic semisimplicity of the big quantum cohomology for . Further, by a general result of Hertling, the regularity of these rings implies that they have a description in terms of isolated hypersurface singularities, which we show in this case to be of type . By the homological mirror symmetry conjecture, these results suggest the existence of a very special full exceptional collection in the derived category of coherent sheaves on . Such a collection is constructed in the appendix by Alexander Kuznetsov.
Accepté le :
Publié le :
DOI : 10.5802/aif.3263
Keywords: semisimplicity of quantum cohomology, unfoldings of singularities, Lefschetz exceptional collections
Mot clés : semi-simplicité de la cohomologie quantique, déploiement des singularités, collections de Lefschetz exceptionnelles
Cruz Morales, John Alexander 1 ; Mellit, Anton 2 ; Perrin, Nicolas 3 ; Smirnov, Maxim 4
@article{AIF_2019__69_3_955_0, author = {Cruz Morales, John Alexander and Mellit, Anton and Perrin, Nicolas and Smirnov, Maxim}, title = {On quantum cohomology of {Grassmannians} of isotropic lines, unfoldings of $A_n$-singularities, and {Lefschetz} exceptional collections}, journal = {Annales de l'Institut Fourier}, pages = {955--991}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {3}, year = {2019}, doi = {10.5802/aif.3263}, zbl = {07067424}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3263/} }
TY - JOUR AU - Cruz Morales, John Alexander AU - Mellit, Anton AU - Perrin, Nicolas AU - Smirnov, Maxim TI - On quantum cohomology of Grassmannians of isotropic lines, unfoldings of $A_n$-singularities, and Lefschetz exceptional collections JO - Annales de l'Institut Fourier PY - 2019 SP - 955 EP - 991 VL - 69 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3263/ DO - 10.5802/aif.3263 LA - en ID - AIF_2019__69_3_955_0 ER -
%0 Journal Article %A Cruz Morales, John Alexander %A Mellit, Anton %A Perrin, Nicolas %A Smirnov, Maxim %T On quantum cohomology of Grassmannians of isotropic lines, unfoldings of $A_n$-singularities, and Lefschetz exceptional collections %J Annales de l'Institut Fourier %D 2019 %P 955-991 %V 69 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3263/ %R 10.5802/aif.3263 %G en %F AIF_2019__69_3_955_0
Cruz Morales, John Alexander; Mellit, Anton; Perrin, Nicolas; Smirnov, Maxim. On quantum cohomology of Grassmannians of isotropic lines, unfoldings of $A_n$-singularities, and Lefschetz exceptional collections. Annales de l'Institut Fourier, Tome 69 (2019) no. 3, pp. 955-991. doi : 10.5802/aif.3263. https://aif.centre-mersenne.org/articles/10.5802/aif.3263/
[1] Singularities of differentiable maps. Volume 1. Classification of critical points, caustics and wave fronts, Modern Birkhäuser Classics, Birkhäuser, 2012, xii+382 pages (translated from the Russian by Ian Porteous based on a previous translation by Mark Reynolds, reprint of the 1985 edition) | MR | Zbl
[2] Semisimple quantum cohomology and blowups, Int. Math. Res. Not. (2004) no. 40, pp. 2069-2083 | DOI | MR | Zbl
[3] Quantum Pieri rules for isotropic Grassmannians, Invent. Math., Volume 178 (2009) no. 2, pp. 345-405 | DOI | MR | Zbl
[4] Quantum cohomology of minuscule homogeneous spaces III. Semi-simplicity and consequences, Can. J. Math., Volume 62 (2010) no. 6, pp. 1246-1263 | DOI | MR | Zbl
[5] On the quantum cohomology of adjoint varieties, Proc. Lond. Math. Soc., Volume 103 (2011) no. 2, pp. 294-330 | DOI | MR | Zbl
[6] On the convergence of Gromov-Witten potentials and Givental’s formula, Mich. Math. J., Volume 64 (2015) no. 3, pp. 587-631 | DOI | MR | Zbl
[7] Geometry and analytic theory of Frobenius manifolds, Doc. Math. (1998), pp. 315-326 Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998) | MR | Zbl
[8] Quantum cohomology and isomonodromic deformation (2013) (Lecture at “Recent Progress in the Theory of Painleve Equations: Algebraic, asymptotic and topological aspects", Strasbourg,)
[9] Minimal Lefschetz decompositions of the derived categories for Grassmannians, Izv. Math., Volume 77 (2013) no. 5, pp. 203-224 | MR | Zbl
[10] Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995 (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 45-96 | DOI | MR | Zbl
[11] Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures, Duke Math. J., Volume 165 (2016) no. 11, pp. 2005-2077 | DOI | MR | Zbl
[12] Dubrovin’s conjecture for , Int. Math. Res. Not. (2015) no. 18, pp. 8847-8859 | DOI | MR | Zbl
[13] Automatically generating Fukaya categories and computing quantum cohomology (2016) (https://arxiv.org/abs/1605.07702)
[14] Numdam
(Email communication dated 04.04.2016) |[15] Weak Frobenius manifolds, Int. Math. Res. Not. (1999) no. 6, pp. 277-286 | DOI | MR | Zbl
[16] An update on semisimple quantum cohomology and -manifolds, Tr. Mat. Inst. Steklova, Volume 264 (2009), pp. 69-76 | DOI | MR | Zbl
[17] Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Mathematics, 151, Cambridge University Press, 2002, x+270 pages | DOI | MR | Zbl
[18] The transversality of a general translate, Compos. Math., Volume 28 (1974), pp. 287-297 | MR | Zbl
[19] Homological projective duality, Publ. Math., Inst. Hautes �tud. Sci. (2007) no. 105, pp. 157-220 | DOI | MR | Zbl
[20] Exceptional collections for Grassmannians of isotropic lines, Proc. Lond. Math. Soc., Volume 97 (2008) no. 1, pp. 155-182 | DOI | MR | Zbl
[21] Semiorthogonal decompositions in algebraic geometry, Proceedings of the International Congress of Mathematicians, Vol. II (Seoul, 2014) (2014), pp. 635-660 | MR | Zbl
[22] On the projective geometry of rational homogeneous varieties, Comment. Math. Helv., Volume 78 (2003) no. 1, pp. 65-100 | DOI | MR | Zbl
[23] Global matrix factorizations, Math. Res. Lett., Volume 20 (2013) no. 1, pp. 91-106 | DOI | MR | Zbl
[24] Frobenius manifolds, quantum cohomology, and moduli spaces, Colloquium Publications, 47, American Mathematical Society, 1999, xiv+303 pages | DOI | MR | Zbl
[25] Landau-Ginzburg models, D-branes and mirror symmetry, Mat. Contemp., Volume 41 (2012), pp. 75-112 | MR | Zbl
[26] Semisimple quantum cohomology of some Fano varieties (2014) (https://arxiv.org/abs/1405.5914v1)
[27] A mathematical theory of quantum cohomology, J. Differ. Geom., Volume 42 (1995) no. 2, pp. 259-367 | DOI | MR | Zbl
[28] Some remarks on the derived categories of coherent sheaves on homogeneous spaces, J. Lond. Math. Soc., Volume 76 (2007) no. 1, pp. 122-134 | DOI | MR | Zbl
[29] More about vanishing cycles and mutation, Symplectic geometry and mirror symmetry (Seoul, 2000), World Scientific, 2001, pp. 429-465 | DOI | MR | Zbl
[30] Hilbert functions of graded algebras, Adv. Math., Volume 28 (1978) no. 1, pp. 57-83 | DOI | MR | Zbl
[31] Lines in , Math. Z., Volume 242 (2002) no. 2, pp. 227-240 | DOI | MR | Zbl
Cité par Sources :