Un problème dû à Glasner, et désormais connu sous de nom de problème de Glasner, demande s’il existe un groupe polonais, minimalement presque périodique et monothétique, qui n’est pas extrêmement moyennable. Le but de cette courte note est d’observer qu’une réponse négative s’obtient sous l’hypothèse supplémentaire de la métrisablité du flot minimal universel.
Avertissement :Suite à une erreur d’édition, la référence [13] est erronée dans le PDF. Elle aurait dû être :
[13] Nguyen Van Thé, Lionel On a problem of Specker about Euclidean representations of finite graphs (2017) (https://arxiv.org/abs/0810.2359, to appear in Expo. Math.)
A problem of Glasner, now known as Glasner’s problem, asks whether there exists a minimally almost periodic, monothetic, Polish group that is not extremely amenable. The purpose of this short note is to observe that a negative answer is obtained under the additional assumption that the universal minimal flow is metrizable.
Disclaimer:Due to an editorial error, the citation [13] is wrong in the PDF. It should read:
[13] Nguyen Van Thé, Lionel On a problem of Specker about Euclidean representations of finite graphs (2017) (https://arxiv.org/abs/0810.2359, to appear in Expo. Math.)
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3262
Keywords: Glasner’s problem, Minimal almost periodicity, Bohr compactification
Mot clés : Problème de Glasner, presque périodicité minimale, compactification de Bohr
Nguyen Van Thé, Lionel 1
@article{AIF_2019__69_2_941_0, author = {Nguyen Van Th\'e, Lionel}, title = {Glasner{\textquoteright}s problem for {Polish} groups with metrizable universal minimal flow}, journal = {Annales de l'Institut Fourier}, pages = {941--953}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {2}, year = {2019}, doi = {10.5802/aif.3262}, zbl = {07067423}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3262/} }
TY - JOUR AU - Nguyen Van Thé, Lionel TI - Glasner’s problem for Polish groups with metrizable universal minimal flow JO - Annales de l'Institut Fourier PY - 2019 SP - 941 EP - 953 VL - 69 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3262/ DO - 10.5802/aif.3262 LA - en ID - AIF_2019__69_2_941_0 ER -
%0 Journal Article %A Nguyen Van Thé, Lionel %T Glasner’s problem for Polish groups with metrizable universal minimal flow %J Annales de l'Institut Fourier %D 2019 %P 941-953 %V 69 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3262/ %R 10.5802/aif.3262 %G en %F AIF_2019__69_2_941_0
Nguyen Van Thé, Lionel. Glasner’s problem for Polish groups with metrizable universal minimal flow. Annales de l'Institut Fourier, Tome 69 (2019) no. 2, pp. 941-953. doi : 10.5802/aif.3262. https://aif.centre-mersenne.org/articles/10.5802/aif.3262/
[1] On Roelcke precompact Polish groups which cannot act transitively on a complete metric space (2015) (https://hal.archives-ouvertes.fr/hal-01207953v2) | Zbl
[2] Metrizable universal minimal flows of Polish groups have a comeagre orbit, Geom. Funct. Anal., Volume 27 (2017) no. 1, pp. 67-77 | MR | Zbl
[3] On minimal actions of Polish groups, Topology Appl., Volume 85 (1998) no. 1-3, pp. 119-125 | DOI | MR | Zbl
[4] Proximal flows, Lecture Notes in Mathematics, 517, Springer, 1976, viii+153 pages | MR | Zbl
[5] On the connection of the dual space of a group with the structure of its closed subgroups, Funkts. Anal. Prilozh., Volume 1 (1967), pp. 71-74 | MR | Zbl
[6] Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal., Volume 15 (2005) no. 1, pp. 106-189 | Zbl
[7] Countable homogeneous tournaments, Trans. Am. Math. Soc., Volume 284 (1984) no. 2, pp. 431-461 | DOI | MR | Zbl
[8] Countable ultrahomogeneous undirected graphs, Trans. Am. Math. Soc., Volume 262 (1980) no. 1, pp. 51-94 | DOI | MR | Zbl
[9] Simplicity of some automorphism groups, J. Algebra, Volume 342 (2011) no. 1, pp. 40-52 | MR | Zbl
[10] Polish groups with metrizable universal minimal flows, Int. Math. Res. Not., Volume 2016 (2016) no. 5, pp. 1285-1307 | DOI | MR | Zbl
[11] Partitions of finite relational and set systems, J. Comb. Theory, Ser. A, Volume 22 (1977) no. 3, pp. 289-312 | MR | Zbl
[12] More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions, Fundam. Math., Volume 222 (2013), pp. 19-47 | DOI | MR | Zbl
[13] On a problem of Specker about Euclidean representations of finite graphs (2017) (https://arxiv.org/abs/0810.2359, to appear in Expo. Math.)
[14] Open problems in topology. II (Pearl, Elliott, ed.), Elsevier, 2007, xii+763 pages | MR | Zbl
[15] The group of the countable universal graph, Math. Proc. Camb. Philos. Soc., Volume 98 (1985) no. 2, pp. 213-245 | MR | Zbl
[16] Unitary representations of oligomorphic groups, Geom. Funct. Anal., Volume 22 (2012) no. 2, pp. 528-555 | DOI | MR | Zbl
[17] Elements of topological dynamics, Mathematics and its Applications, 257, Kluwer Academic Publishers, 1993, xvi+748 pages | MR | Zbl
[18] On isolated points in the dual spaces of locally compact groups, Math. Ann., Volume 218 (1975) no. 1, pp. 19-34 | MR | Zbl
[19] Topological dynamics of automorphism groups, ultrafilter combinatorics, and the generic point problem, Trans. Am. Math. Soc., Volume 368 (2016) no. 9, pp. 6715-6740 | DOI | MR | Zbl
Cité par Sources :