On a Nielsen–Thurston classification theory for cluster modular groups
Annales de l'Institut Fourier, Volume 69 (2019) no. 2, pp. 515-560.

We classify elements of a cluster modular group into three types. We characterize them in terms of fixed point property of the action on the tropical compactifications associated with the corresponding cluster ensemble. The characterization gives an analogue of the Nielsen–Thurston classification theory on the mapping class group of a surface.

Nous classons les éléments d’un groupe modulaire de cluster en trois types. Nous les caractérisons en termes de propriété de point fixe de l’action sur les compactifications tropicales associées à l’ensemble de cluster correspondant. La caractérisation donne un analogue de la théorie de classification de Nielsen–Thurston sur le groupe modulaire d’une surface.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3250
Classification: 13F60, 30F60, 57M50
Keywords: cluster modular groups, mapping class groups, decorated Teichmüller theory
Mot clés : groupes modulaires de cluster, groupes modulaire, théorie de Teichmuller décorée
Ishibashi, Tsukasa 1

1 the University of Tokyo Graduate School of Mathematical Sciences 3-8-1 Komaba, Meguro Tokyo 153-8914 (Japan)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2019__69_2_515_0,
     author = {Ishibashi, Tsukasa},
     title = {On a {Nielsen{\textendash}Thurston} classification theory for cluster modular groups},
     journal = {Annales de l'Institut Fourier},
     pages = {515--560},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {2},
     year = {2019},
     doi = {10.5802/aif.3250},
     zbl = {07067411},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3250/}
}
TY  - JOUR
AU  - Ishibashi, Tsukasa
TI  - On a Nielsen–Thurston classification theory for cluster modular groups
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 515
EP  - 560
VL  - 69
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3250/
DO  - 10.5802/aif.3250
LA  - en
ID  - AIF_2019__69_2_515_0
ER  - 
%0 Journal Article
%A Ishibashi, Tsukasa
%T On a Nielsen–Thurston classification theory for cluster modular groups
%J Annales de l'Institut Fourier
%D 2019
%P 515-560
%V 69
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3250/
%R 10.5802/aif.3250
%G en
%F AIF_2019__69_2_515_0
Ishibashi, Tsukasa. On a Nielsen–Thurston classification theory for cluster modular groups. Annales de l'Institut Fourier, Volume 69 (2019) no. 2, pp. 515-560. doi : 10.5802/aif.3250. https://aif.centre-mersenne.org/articles/10.5802/aif.3250/

[1] Assem, Ibrahim; Schiffler, Ralf; Shramchenko, Vasilisa Cluster automorphisms, Proc. Lond. Math. Soc., Volume 104 (2012) no. 6, pp. 1271-1302 | DOI | MR | Zbl

[2] Blanc, Jérémy; Dolgachev, Igor Automorphisms of cluster algebras of rank 2, Transform. Groups, Volume 20 (2015) no. 1, pp. 1-20 | DOI | MR | Zbl

[3] Bridgeland, Tom; Smith, Ivan Quadratic differentials as stability conditions, Publ. Math., Inst. Hautes Étud. Sci., Volume 121 (2015), pp. 155-278 | DOI | MR | Zbl

[4] Brown, Kenneth S. Complete Euler characteristics and fixed-point theory, J. Pure Appl. Algebra, Volume 24 (1982) no. 2, pp. 103-121 | DOI | MR | Zbl

[5] Cerulli Irelli, Giovanni; Keller, Bernhard; Labardini-Fragoso, Daniel; Plamondon, Pierre-Guy Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math., Volume 149 (2013) no. 10, pp. 1753-1764 | DOI | MR | Zbl

[6] Chang, Wen; Zhu, Bin Cluster automorphism groups of cluster algebras of finite type, J. Algebra, Volume 447 (2016), pp. 490-515 | DOI | MR | Zbl

[7] Chang, Wen; Zhu, Bin Cluster automorphism groups of cluster algebras with coefficients, Sci. China, Math., Volume 59 (2016) no. 10, pp. 1919-1936 | DOI | MR | Zbl

[8] Derksen, Harm; Owen, Theodore New graphs of finite mutation type, Electron. J. Comb., Volume 15 (2008) no. 1, 139, 15 pages http://www.combinatorics.org/volume_15/abstracts/v15i1r139.html | MR | Zbl

[9] Farb, Benson; Margalit, Dan A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, 2012, xiv+472 pages | MR | Zbl

[10] Fathi, Albert; Laudenbach, François; Poénaru, Valentin Thurston’s work on surfaces, Mathematical Notes, 48, Princeton University Press, 2012, xvi+254 pages (Translated from the 1979 French original by Djun M. Kim and Dan Margalit) | MR | Zbl

[11] Felikson, Anna; Shapiro, Michael; Tumarkin, Pavel Skew-symmetric cluster algebras of finite mutation type, J. Eur. Math. Soc., Volume 14 (2012) no. 4, pp. 1135-1180 | DOI | MR | Zbl

[12] Fock, Vladimir V.; Goncharov, Alexander B. Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Étud. Sci. (2006) no. 103, pp. 1-211 | DOI | MR | Zbl

[13] Fock, Vladimir V.; Goncharov, Alexander B. Dual Teichmüller and lamination spaces, Handbook of Teichmüller theory. Vol. I (IRMA Lectures in Mathematics and Theoretical Physics), Volume 11, European Mathematical Society, 2007, pp. 647-684 | DOI | MR | Zbl

[14] Fock, Vladimir V.; Goncharov, Alexander B. Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (2009) no. 6, pp. 865-930 | DOI | MR | Zbl

[15] Fock, Vladimir V.; Goncharov, Alexander B. Cluster Poisson varieties at infinity, Sel. Math., New Ser., Volume 22 (2016) no. 4, pp. 2569-2589 | DOI | MR | Zbl

[16] Fomin, Sergey; Shapiro, Michael; Thurston, Dylan Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., Volume 201 (2008) no. 1, pp. 83-146 | DOI | MR | Zbl

[17] Fomin, Sergey; Thurston, Dylan Cluster algebras and triangulated surfaces. II. Lambda lengths (2012) (preprint) | Zbl

[18] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. II. Finite type classification, Invent. Math., Volume 154 (2003) no. 1, pp. 63-121 | DOI | MR | Zbl

[19] Fraser, Chris Quasi-homomorphisms of cluster algebras, Adv. Appl. Math., Volume 81 (2016), pp. 40-77 | DOI | MR | Zbl

[20] Harer, John L. The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., Volume 84 (1986) no. 1, pp. 157-176 | DOI | MR | Zbl

[21] Hatcher, Allen On triangulations of surfaces, Topology Appl., Volume 40 (1991) no. 2, pp. 189-194 | DOI | MR | Zbl

[22] Kashaev, R. M. On the spectrum of Dehn twists in quantum Teichmüller theory, Physics and combinatorics, 2000 (Nagoya), World Scientific, 2001, pp. 63-81 | DOI | MR | Zbl

[23] Lawson, John W. Cluster automorphisms and the marked exchange graphs of skew-symmetrizable cluster algebras, Electron. J. Comb., Volume 23 (2016) no. 4, 4.41, 33 pages | MR | Zbl

[24] Le, Ian Higher laminations and affine buildings, Geom. Topol., Volume 20 (2016) no. 3, pp. 1673-1735 | DOI | MR | Zbl

[25] Mandel, Travis Classification of rank 2 cluster varieties, 2014 | arXiv

[26] Papadopoulos, Athanase; Penner, Robert C. The Weil-Petersson symplectic structure at Thurston’s boundary, Trans. Am. Math. Soc., Volume 335 (1993) no. 2, pp. 891-904 | DOI | MR | Zbl

[27] Penner, Robert C. The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys., Volume 113 (1987) no. 2, pp. 299-339 http://projecteuclid.org/euclid.cmp/1104160216 | MR | Zbl

[28] Penner, Robert C. Decorated Teichmüller theory, The QGM Master Class Series, European Mathematical Society, 2012, xviii+360 pages (With a foreword by Yuri I. Manin) | DOI | MR | Zbl

[29] Penner, Robert C.; Harer, John L. Combinatorics of train tracks, Annals of Mathematics Studies, 125, Princeton University Press, 1992, xii+216 pages | DOI | MR | Zbl

[30] Thurston, William P. On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Am. Math. Soc., Volume 19 (1988) no. 2, pp. 417-431 | DOI | MR | Zbl

Cited by Sources: