Pleijel’s nodal domain theorem for Neumann and Robin eigenfunctions
[Théorème nodal de Pleijel pour les fonctions propres de Neumann et de Robin]
Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 283-301.

Nous montrons que le cas d’égalité dans le théorème de Courant n’est réalisé que pour un nombre fini de valeurs propres du laplacien de Neumann, dans un ouvert borné connexe de n à bord C 1,1 , lorsque n2. Ce résultat est analogue au théorème démontré par Pleijel en 1956 pour le laplacien de Dirichlet. Nous montrons de plus que la méthode de démonstration et le résultat peuvent être étendus à une classe de conditions au bord de Robin.

We show that equality in Courant’s nodal domain theorem can only be reached for a finite number of eigenvalues of the Neumann Laplacian, in an open, bounded, and connected subset of n with a C 1,1 boundary, when n2. This result is analogous to the theorem proved by Pleijel in 1956 for the Dirichlet Laplacian. We also show that the argument and the result extend to a class of Robin boundary conditions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3243
Classification : 35P05, 35P15, 35P20, 58J50
Keywords: Neumann eigenvalues, Robin eigenvalues, nodal domains, Courant’s theorem, Pleijel’s theorem
Mot clés : valeurs propres de Neumann, valeurs propres de Robin, domaines nodaux, théorème de Courant, théorème de Pleijel

Léna, Corentin 1

1 Grupo de Física Matemática Universidade de Lisboa Departamento de Matemática Faculdade de Cienciâs Campo Grande, Edifício C6 1749-016 Lisboa (Portugal)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_1_283_0,
     author = {L\'ena, Corentin},
     title = {Pleijel{\textquoteright}s nodal domain theorem for {Neumann} and {Robin} eigenfunctions},
     journal = {Annales de l'Institut Fourier},
     pages = {283--301},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {1},
     year = {2019},
     doi = {10.5802/aif.3243},
     zbl = {07067404},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3243/}
}
TY  - JOUR
AU  - Léna, Corentin
TI  - Pleijel’s nodal domain theorem for Neumann and Robin eigenfunctions
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 283
EP  - 301
VL  - 69
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3243/
DO  - 10.5802/aif.3243
LA  - en
ID  - AIF_2019__69_1_283_0
ER  - 
%0 Journal Article
%A Léna, Corentin
%T Pleijel’s nodal domain theorem for Neumann and Robin eigenfunctions
%J Annales de l'Institut Fourier
%D 2019
%P 283-301
%V 69
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3243/
%R 10.5802/aif.3243
%G en
%F AIF_2019__69_1_283_0
Léna, Corentin. Pleijel’s nodal domain theorem for Neumann and Robin eigenfunctions. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 283-301. doi : 10.5802/aif.3243. https://aif.centre-mersenne.org/articles/10.5802/aif.3243/

[1] Bérard, Pierre; Helffer, Bernard The weak Pleijel theorem with geometric control, J. Spectr. Theory, Volume 6 (2016) no. 4, pp. 717-733 | DOI | MR | Zbl

[2] Bérard, Pierre; Meyer, Daniel Inégalités isopérimétriques et applications, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982) no. 3, pp. 513-541 | DOI | MR | Zbl

[3] van den Berg, Michiel; Gittins, Katie On the number of Courant-sharp Dirichlet eigenvalues, J. Spectr. Theory, Volume 6 (2016) no. 4, pp. 735-745 | DOI | MR | Zbl

[4] Bonnaillie-Noël, Virginie; Helffer, Bernard Nodal and spectral minimal partitions – the state of the art in 2016, Shape optimization and spectral theory, De Gruyter, 2017, pp. 353-397 | MR | Zbl

[5] Bourgain, Jean On Pleijel’s nodal domain theorem, Int. Math. Res. Not. (2015) no. 6, pp. 1601-1612 | MR | Zbl

[6] Charron, Philippe A Pleijel-type theorem for the quantum harmonic oscillator, J. Spectr. Theory, Volume 8 (2018) no. 2, pp. 715-732 | DOI | MR | Zbl

[7] Charron, Philippe; Helffer, Bernard; Hoffmann-Ostenhof, Thomas Pleijel’s theorem for Schrödinger operators with radial potentials, Ann. Math. Qué., Volume 42 (2018) no. 1, pp. 7-29 | DOI | Zbl

[8] Courant, Richard Ein allgemeiner Satz zur Theorie der Eigenfunktionen selbstadjungierter Differentialausdrücke, Gött. Nachr., Volume 1923 (1923), pp. 81-84 | Zbl

[9] Courant, Richard; Hilbert, David Methods of mathematical physics. Vol. I, Interscience Publishers, 1953, xv+561 pages | MR | Zbl

[10] Donnelly, Harold Counting nodal domains in Riemannian manifolds, Ann. Global Anal. Geom., Volume 46 (2014) no. 1, pp. 57-61 | DOI | MR | Zbl

[11] Grisvard, Pierre Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24, Pitman Publishing Inc., 1985, xiv+410 pages | MR | Zbl

[12] Hardt, Robert; Hoffmann-Ostenhof, Maria; Hoffmann-Ostenhof, Thomas; Nadirashvili, Nikolai Critical sets of solutions to elliptic equations, J. Differ. Geom., Volume 51 (1999) no. 2, pp. 359-373 http://projecteuclid.org/euclid.jdg/1214425070 | DOI | MR | Zbl

[13] Helffer, Bernard; Hoffmann-Ostenhof, Thomas A review on large k minimal spectral k-partitions and Pleijel’s theorem, Spectral theory and partial differential equations (Contemporary Mathematics), Volume 640, American Mathematical Society, 2015, pp. 39-57 | DOI | MR | Zbl

[14] Helffer, Bernard; Hoffmann-Ostenhof, Thomas; Terracini, Susanna Nodal domains and spectral minimal partitions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 1, pp. 101-138 | DOI | MR | Zbl

[15] Helffer, Bernard; Persson Sundqvist, Mikael On nodal domains in Euclidean balls, Proc. Am. Math. Soc., Volume 144 (2016) no. 11, pp. 4777-4791 | DOI | MR | Zbl

[16] Henrot, Antoine Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser, 2006, x+202 pages | MR | Zbl

[17] Peetre, Jaak A generalization of Courant’s nodal domain theorem, Math. Scand., Volume 5 (1957), pp. 15-20 | DOI | MR | Zbl

[18] Pleijel, Åke Remarks on Courant’s nodal line theorem, Commun. Pure Appl. Math., Volume 9 (1956), pp. 543-550 | DOI | MR | Zbl

[19] Polterovich, Iosif Pleijel’s nodal domain theorem for free membranes, Proc. Am. Math. Soc., Volume 137 (2009) no. 3, pp. 1021-1024 | DOI | MR | Zbl

[20] Reed, Michael; Simon, Barry Methods of Modern Mathematical physics. II. Fourier Analysis, Self-Adjointness, Academic Press, 1975, xv+361 pages | MR | Zbl

[21] Reed, Michael; Simon, Barry Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, 1978, xv+396 pages | MR | Zbl

[22] Rozenblum, G. V.; Shubin, Mikhail A.; Solomyak, Mikhaĭl Z. Spectral Theory of Differential Operators, Partial differential equations. VII (Encyclopaedia of Mathematical Sciences), Volume 64, Springer, 1994 | DOI | Zbl

[23] Steinerberger, Stefan A geometric uncertainty principle with an application to Pleijel’s estimate, Ann. Henri Poincaré, Volume 15 (2014) no. 12, pp. 2299-2319 | DOI | MR | Zbl

[24] Toth, John A.; Zelditch, Steve Counting nodal lines which touch the boundary of an analytic domain, J. Differ. Geom., Volume 81 (2009) no. 3, pp. 649-686 http://projecteuclid.org/euclid.jdg/1236604347 | DOI | MR | Zbl

[25] Weinstock, Robert Calculus of variations. With applications to physics and engineering, Dover Books on Advanced Mathematics, Dover Publications, 1974, x+326 pages (reprint of the 1952 edition) | MR | Zbl

Cité par Sources :