Nous montrons que le cas d’égalité dans le théorème de Courant n’est réalisé que pour un nombre fini de valeurs propres du laplacien de Neumann, dans un ouvert borné connexe de à bord , lorsque . Ce résultat est analogue au théorème démontré par Pleijel en 1956 pour le laplacien de Dirichlet. Nous montrons de plus que la méthode de démonstration et le résultat peuvent être étendus à une classe de conditions au bord de Robin.
We show that equality in Courant’s nodal domain theorem can only be reached for a finite number of eigenvalues of the Neumann Laplacian, in an open, bounded, and connected subset of with a boundary, when . This result is analogous to the theorem proved by Pleijel in 1956 for the Dirichlet Laplacian. We also show that the argument and the result extend to a class of Robin boundary conditions.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3243
Keywords: Neumann eigenvalues, Robin eigenvalues, nodal domains, Courant’s theorem, Pleijel’s theorem
Mot clés : valeurs propres de Neumann, valeurs propres de Robin, domaines nodaux, théorème de Courant, théorème de Pleijel
Léna, Corentin 1
@article{AIF_2019__69_1_283_0, author = {L\'ena, Corentin}, title = {Pleijel{\textquoteright}s nodal domain theorem for {Neumann} and {Robin} eigenfunctions}, journal = {Annales de l'Institut Fourier}, pages = {283--301}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {1}, year = {2019}, doi = {10.5802/aif.3243}, zbl = {07067404}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3243/} }
TY - JOUR AU - Léna, Corentin TI - Pleijel’s nodal domain theorem for Neumann and Robin eigenfunctions JO - Annales de l'Institut Fourier PY - 2019 SP - 283 EP - 301 VL - 69 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3243/ DO - 10.5802/aif.3243 LA - en ID - AIF_2019__69_1_283_0 ER -
%0 Journal Article %A Léna, Corentin %T Pleijel’s nodal domain theorem for Neumann and Robin eigenfunctions %J Annales de l'Institut Fourier %D 2019 %P 283-301 %V 69 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3243/ %R 10.5802/aif.3243 %G en %F AIF_2019__69_1_283_0
Léna, Corentin. Pleijel’s nodal domain theorem for Neumann and Robin eigenfunctions. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 283-301. doi : 10.5802/aif.3243. https://aif.centre-mersenne.org/articles/10.5802/aif.3243/
[1] The weak Pleijel theorem with geometric control, J. Spectr. Theory, Volume 6 (2016) no. 4, pp. 717-733 | DOI | MR | Zbl
[2] Inégalités isopérimétriques et applications, Ann. Sci. Éc. Norm. Supér., Volume 15 (1982) no. 3, pp. 513-541 | DOI | MR | Zbl
[3] On the number of Courant-sharp Dirichlet eigenvalues, J. Spectr. Theory, Volume 6 (2016) no. 4, pp. 735-745 | DOI | MR | Zbl
[4] Nodal and spectral minimal partitions – the state of the art in 2016, Shape optimization and spectral theory, De Gruyter, 2017, pp. 353-397 | MR | Zbl
[5] On Pleijel’s nodal domain theorem, Int. Math. Res. Not. (2015) no. 6, pp. 1601-1612 | MR | Zbl
[6] A Pleijel-type theorem for the quantum harmonic oscillator, J. Spectr. Theory, Volume 8 (2018) no. 2, pp. 715-732 | DOI | MR | Zbl
[7] Pleijel’s theorem for Schrödinger operators with radial potentials, Ann. Math. Qué., Volume 42 (2018) no. 1, pp. 7-29 | DOI | Zbl
[8] Ein allgemeiner Satz zur Theorie der Eigenfunktionen selbstadjungierter Differentialausdrücke, Gött. Nachr., Volume 1923 (1923), pp. 81-84 | Zbl
[9] Methods of mathematical physics. Vol. I, Interscience Publishers, 1953, xv+561 pages | MR | Zbl
[10] Counting nodal domains in Riemannian manifolds, Ann. Global Anal. Geom., Volume 46 (2014) no. 1, pp. 57-61 | DOI | MR | Zbl
[11] Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24, Pitman Publishing Inc., 1985, xiv+410 pages | MR | Zbl
[12] Critical sets of solutions to elliptic equations, J. Differ. Geom., Volume 51 (1999) no. 2, pp. 359-373 http://projecteuclid.org/euclid.jdg/1214425070 | DOI | MR | Zbl
[13] A review on large minimal spectral -partitions and Pleijel’s theorem, Spectral theory and partial differential equations (Contemporary Mathematics), Volume 640, American Mathematical Society, 2015, pp. 39-57 | DOI | MR | Zbl
[14] Nodal domains and spectral minimal partitions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 1, pp. 101-138 | DOI | MR | Zbl
[15] On nodal domains in Euclidean balls, Proc. Am. Math. Soc., Volume 144 (2016) no. 11, pp. 4777-4791 | DOI | MR | Zbl
[16] Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser, 2006, x+202 pages | MR | Zbl
[17] A generalization of Courant’s nodal domain theorem, Math. Scand., Volume 5 (1957), pp. 15-20 | DOI | MR | Zbl
[18] Remarks on Courant’s nodal line theorem, Commun. Pure Appl. Math., Volume 9 (1956), pp. 543-550 | DOI | MR | Zbl
[19] Pleijel’s nodal domain theorem for free membranes, Proc. Am. Math. Soc., Volume 137 (2009) no. 3, pp. 1021-1024 | DOI | MR | Zbl
[20] Methods of Modern Mathematical physics. II. Fourier Analysis, Self-Adjointness, Academic Press, 1975, xv+361 pages | MR | Zbl
[21] Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, 1978, xv+396 pages | MR | Zbl
[22] Spectral Theory of Differential Operators, Partial differential equations. VII (Encyclopaedia of Mathematical Sciences), Volume 64, Springer, 1994 | DOI | Zbl
[23] A geometric uncertainty principle with an application to Pleijel’s estimate, Ann. Henri Poincaré, Volume 15 (2014) no. 12, pp. 2299-2319 | DOI | MR | Zbl
[24] Counting nodal lines which touch the boundary of an analytic domain, J. Differ. Geom., Volume 81 (2009) no. 3, pp. 649-686 http://projecteuclid.org/euclid.jdg/1236604347 | DOI | MR | Zbl
[25] Calculus of variations. With applications to physics and engineering, Dover Books on Advanced Mathematics, Dover Publications, 1974, x+326 pages (reprint of the 1952 edition) | MR | Zbl
Cité par Sources :