Nous donnons deux applications de la dualité entre l’équation de Monge–Ampère complexe homogène (HCMA) et le flot de Hele-Shaw. D’abord nous prouvons l’existence de données lisses au bord pour lesquelles la solution faible au problème de Dirichlet pour l’équation HCMA sur n’est pas deux fois différentiable en certains points fixés a priori ainsi que des exemples qui ne sont pas différentiables le long d’un ensemble de codimension 1 de . Puis nous expliquons comment obtenir explicitement des familles de rayons géodésiques lisses dans l’espace des métriques Kähler sur et sur le disque unité . Ils sont construits à partir d’une famille à la fois exhaustive et croissante de domaines simplement connexes variant de manière lisse.
We give two applications of the duality between the Homogeneous Complex Monge–Ampère Equation (HCMA) and the Hele-Shaw flow. First, we prove existence of smooth boundary data for which the weak solution to the Dirichlet problem for the HCMA over is not twice differentiable at a given collection of points, and also examples that are not twice differentiable along a set of codimension one in . Second, we discuss how to obtain explicit families of smooth geodesic rays in the space of Kähler metrics on and on the unit disc that are constructed from an exhausting family of increasing smoothly varying simply connected domains.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3237
Keywords: Complex Monge–Ampère equations, Hele-Shaw flows
Mot clés : l’équation de Monge–Ampère complexe, flot de Hele-Shaw
Ross, Julius 1 ; Nyström, David Witt 1
@article{AIF_2019__69_1_1_0, author = {Ross, Julius and Nystr\"om, David Witt}, title = {Applications of the duality between the {Homogeneous} {Complex} {Monge{\textendash}Amp\`ere} {Equation} and the {Hele-Shaw} flow}, journal = {Annales de l'Institut Fourier}, pages = {1--30}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {1}, year = {2019}, doi = {10.5802/aif.3237}, zbl = {07067398}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3237/} }
TY - JOUR AU - Ross, Julius AU - Nyström, David Witt TI - Applications of the duality between the Homogeneous Complex Monge–Ampère Equation and the Hele-Shaw flow JO - Annales de l'Institut Fourier PY - 2019 SP - 1 EP - 30 VL - 69 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3237/ DO - 10.5802/aif.3237 LA - en ID - AIF_2019__69_1_1_0 ER -
%0 Journal Article %A Ross, Julius %A Nyström, David Witt %T Applications of the duality between the Homogeneous Complex Monge–Ampère Equation and the Hele-Shaw flow %J Annales de l'Institut Fourier %D 2019 %P 1-30 %V 69 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3237/ %R 10.5802/aif.3237 %G en %F AIF_2019__69_1_1_0
Ross, Julius; Nyström, David Witt. Applications of the duality between the Homogeneous Complex Monge–Ampère Equation and the Hele-Shaw flow. Annales de l'Institut Fourier, Tome 69 (2019) no. 1, pp. 1-30. doi : 10.5802/aif.3237. https://aif.centre-mersenne.org/articles/10.5802/aif.3237/
[1] Two counterexamples concerning the pluri-complex Green function in , Indiana Univ. Math. J., Volume 37 (1988) no. 4, pp. 865-867 | DOI | MR | Zbl
[2] The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., Volume 37 (1976) no. 1, pp. 1-44 | DOI | MR | Zbl
[3] The regularity of the pluricomplex Green function, Mich. Math. J., Volume 47 (2000) no. 2, pp. 211-215 | DOI | MR | Zbl
[4] On geodesics in the space of Kähler metrics, Advances in geometric analysis (Advanced Lectures in Mathematics (ALM)), Volume 21, International Press, 2012, pp. 3-19 | MR | Zbl
[5] The space of Kähler metrics, J. Differ. Geom., Volume 56 (2000) no. 2, pp. 189-234 http://projecteuclid.org/euclid.jdg/1090347643 | DOI | MR | Zbl
[6] Morse theory and geodesics in the space of Kähler metrics, Proc. Am. Math. Soc., Volume 142 (2014) no. 8, pp. 2775-2782 | DOI | MR | Zbl
[7] Weak geodesics in the space of Kähler metrics, Math. Res. Lett., Volume 19 (2012) no. 5, pp. 1127-1135 | DOI | MR | Zbl
[8] Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Northern California Symplectic Geometry Seminar (Advances in the Mathematical Sciences), Volume 196, American Mathematical Society, 1999, pp. 13-33 | DOI | MR | Zbl
[9] Holomorphic discs and the complex Monge–Ampère equation, J. Symplectic Geom., Volume 1 (2002) no. 2, pp. 171-196 http://projecteuclid.org/euclid.jsg/1092316649 | DOI | MR | Zbl
[10] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001, xiv+517 pages (Reprint of the 1998 edition) | MR | Zbl
[11] Conformal and potential analysis in Hele-Shaw cells, Advances in Mathematical Fluid Mechanics, Birkhäuser, 2006, x+231 pages | MR | Zbl
[12] Hele-Shaw flow on weakly hyperbolic surfaces, Indiana Univ. Math. J., Volume 54 (2005) no. 4, pp. 1161-1180 | DOI | MR | Zbl
[13] Hele-Shaw flow on hyperbolic surfaces, J. Math. Pures Appl., Volume 81 (2002) no. 3, pp. 187-222 | DOI | MR | Zbl
[14] Function theory of several complex variables, American Mathematical Society, 2001, xvi+564 pages (Reprint of the 1992 edition) | DOI | MR | Zbl
[15] La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. Fr., Volume 109 (1981) no. 4, pp. 427-474 | DOI | MR | Zbl
[16] Geodesics in the space of Kähler metrics, Duke Math. J., Volume 162 (2013) no. 7, pp. 1369-1381 | DOI | MR | Zbl
[17] Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math., Volume 24 (1987) no. 2, pp. 227-252 http://projecteuclid.org/euclid.ojm/1200780161 | MR | Zbl
[18] Hele-Shaw flows with a free boundary produced by the injection of a fluid into a narrow channel, J. Fluid Mech., Volume 56 (1972) no. 4, p. 609-18 | Zbl
[19] Harmonic discs of solutions to the complex homogeneous Monge–Ampère equation, Publ. Math., Inst. Hautes Étud. Sci., Volume 122 (2015), pp. 315-335 | DOI | MR | Zbl
[20] The Hele-Shaw flow and moduli of holomorphic discs, Compos. Math., Volume 151 (2015) no. 12, pp. 2301-2328 | DOI | MR | Zbl
[21] Homogeneous Monge–Ampère Equations and Canonical Tubular Neighbourhoods in Kähler Geometry., Int. Math. Res. Not. (2017) no. 23, pp. 7069-7108 | Zbl
[22] The Cauchy problem for the homogeneous Monge–Ampère equation, II. Legendre transform, Adv. Math., Volume 228 (2011) no. 6, pp. 2989-3025 | DOI | MR | Zbl
[23] The Cauchy problem for the homogeneous Monge–Ampère equation, I. Toeplitz quantization, J. Differ. Geom., Volume 90 (2012) no. 2, pp. 303-327 http://projecteuclid.org/euclid.jdg/1335230849 | DOI | MR | Zbl
[24] The Cauchy problem for the homogeneous Monge–Ampère equation, III. Lifespan, J. Reine Angew. Math., Volume 724 (2017), pp. 105-143 | DOI | MR | Zbl
[25] Complex Monge–Ampère and symplectic manifolds, Am. J. Math., Volume 114 (1992) no. 3, pp. 495-550 | DOI | MR | Zbl
Cité par Sources :