Regularity of push-forward of Monge–Ampère measures
Annales de l'Institut Fourier, Volume 68 (2018) no. 7, pp. 2965-2979.

We prove that the image under any dominant meromorphic map of the Monge–Ampère measure of a Hölder continuous quasi-psh function still possesses a Hölder potential. We also discuss the case of lower regularity.

Nous démontrons que l’image par une application méromorphe dominante d’une mesure de Monge–Ampère d’une fonction quasi-psh et hölderienne possède aussi un potentiel hölderien. Nous discutons aussi le cas de régularité plus basse.

Published online:
DOI: 10.5802/aif.3233
Classification: 32Q15,  32W20,  32Uxx
Keywords: Kähler manifolds, meromorphic map, Monge–Ampère measures
@article{AIF_2018__68_7_2965_0,
     author = {Di Nezza, Eleonora and Favre, Charles},
     title = {Regularity of push-forward of {Monge{\textendash}Amp\`ere} measures},
     journal = {Annales de l'Institut Fourier},
     pages = {2965--2979},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {68},
     number = {7},
     year = {2018},
     doi = {10.5802/aif.3233},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3233/}
}
TY  - JOUR
TI  - Regularity of push-forward of Monge–Ampère measures
JO  - Annales de l'Institut Fourier
PY  - 2018
DA  - 2018///
SP  - 2965
EP  - 2979
VL  - 68
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3233/
UR  - https://doi.org/10.5802/aif.3233
DO  - 10.5802/aif.3233
LA  - en
ID  - AIF_2018__68_7_2965_0
ER  - 
%0 Journal Article
%T Regularity of push-forward of Monge–Ampère measures
%J Annales de l'Institut Fourier
%D 2018
%P 2965-2979
%V 68
%N 7
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.3233
%R 10.5802/aif.3233
%G en
%F AIF_2018__68_7_2965_0
Di Nezza, Eleonora; Favre, Charles. Regularity of push-forward of Monge–Ampère measures. Annales de l'Institut Fourier, Volume 68 (2018) no. 7, pp. 2965-2979. doi : 10.5802/aif.3233. https://aif.centre-mersenne.org/articles/10.5802/aif.3233/

[1] Aizenbud, Avraham; Avni, Nir Representation Growth and Rational Singularities of the Moduli Space of Local Systems, Invent. Math., Tome 204 (2016) no. 1, pp. 245-316 | Zbl: 06581679

[2] Bedford, Eric; Taylor, Bert A. The Dirichlet problem for the complex Monge-Ampère equation, Invent. Math., Tome 37 (1976), pp. 1-44 | Zbl: 0315.31007

[3] Demailly, Jean-Pierre Monge–Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (The University Series in Mathematics), Plenum Press, 1993 | Zbl: 0792.32006

[4] Demailly, Jean-Pierre; Dinew, Sławomir; Guedj, Vincent; Hiep, Pham Hoang; Kołodziej, Sławomir; Zeriahi, Ahmed Hölder continuous solutions to Monge-Ampère equations, J. Eur. Math. Soc., Tome 16 (2014) no. 4, pp. 619-647 | Zbl: 1296.32012

[5] Di Nezza, Eleonora Stability of Monge–Ampère energy classes, J. Geom. Anal., Tome 25 (2014) no. 4, pp. 2565-2589 | Zbl: 1357.32024

[6] Di Nezza, Eleonora Finite Pluricomplex energy measures, Potential Anal., Tome 44 (2015) no. 1, pp. 155-167 | Zbl: 1357.32025

[7] Dinew, Sławomir; Guedj, Vincent; Zeriahi, Ahmed Open problems in pluripotential theory, Complex Var. Elliptic Equ., Tome 61 (2016) no. 7, pp. 902-930 | Zbl: 1345.32040

[8] Dinew, Sławomir; Zhang, Zhou On stability and continuity of bounded solutions of degenerate complex Monge–Ampère equations over compact Kähler manifolds, Adv. Math., Tome 225 (2010) no. 1, pp. 367-388 | Zbl: 1210.32020

[9] Dinh, Tien Cuong; Nguyen, Viet Anh Characterization of Monge-Ampère measures with Hölder continuous potential, J. Funct. Anal., Tome 266 (2014), pp. 67-84

[10] Dinh, Tien Cuong; Nguyen, Viet Anh; Sibony, Nessim Exponential estimates for plurisubharmonic functions and stochastic dynamics, J. Differ. Geom., Tome 84 (2010), pp. 465-488

[11] Favre, Charles Degeneration of endomorphisms of the complex projective space in the hybrid space, J. Inst. Math. Jussieu (2018), 43 pages (43 p., published online) | Article

[12] Guedj, Vincent; Zeriahi, Ahmed Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Tome 15 (2005) no. 4, pp. 607-639

[13] Guedj, Vincent; Zeriahi, Ahmed The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Tome 250 (2007) no. 2, pp. 442-482

[14] Guedj, Vincent; Zeriahi, Ahmed Degenerate Complex Monge–Ampère Equations, EMS Tracts in Mathematics, Tome 26, Société Mathématique de France, 2017, xxiv+472 pages | Zbl: 1373.32001

[15] Kołodziej, Sławomir; Nguyen, Ngoc Cuong Hölder continuous solutions of the Monge-Ampère equation on compact hermitian manifolds, Ann. Inst. Fourier, Tome 68 (2018) no. 7, pp. 2951-2964

[16] Lejeune-Jalabert, Monique; Teissier, Bernard; Risler, Jean-Jacques Clôture intégrale des idéaux et équisingularité, Ann. Fac. Sci. Toulouse, Math., Tome 17 (2008) no. 4, pp. 781-859

[17] Peternell, Thomas Modifications, Several complex variables VII: Sheaf theoretic methods in complex analysis (Encyclopaedia of Mathematical Sciences) Tome 74, Springer, 1994, pp. 285-317 | Zbl: 0807.32028

[18] Reiser, Andrew Pushforwards of Measures on Real Varieties under Maps with Rational Singularities (2018) (https://arxiv.org/abs/1807.00079v1)

[19] Song, Jian; Tian, Gang Canonical measures and Kähler-Ricci flow, J. Am. Math. Soc., Tome 25 (2012) no. 2, pp. 303-353

[20] Tosatti, Valentino Adiabatic limits of Ricci-flat Kähler metrics, J. Differ. Geom., Tome 84 (2010) no. 2, pp. 427-453

Cited by Sources: