Nous démontrons que l’image par une application méromorphe dominante d’une mesure de Monge–Ampère d’une fonction quasi-psh et hölderienne possède aussi un potentiel hölderien. Nous discutons aussi le cas de régularité plus basse.
We prove that the image under any dominant meromorphic map of the Monge–Ampère measure of a Hölder continuous quasi-psh function still possesses a Hölder potential. We also discuss the case of lower regularity.
Keywords: Kähler manifolds, meromorphic map, Monge–Ampère measures
Mot clés : variétés kähleriennes, application méromorphe, mesures de Monge–Ampère
Di Nezza, Eleonora 1 ; Favre, Charles 2
@article{AIF_2018__68_7_2965_0, author = {Di Nezza, Eleonora and Favre, Charles}, title = {Regularity of push-forward of {Monge{\textendash}Amp\`ere} measures}, journal = {Annales de l'Institut Fourier}, pages = {2965--2979}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {7}, year = {2018}, doi = {10.5802/aif.3233}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3233/} }
TY - JOUR AU - Di Nezza, Eleonora AU - Favre, Charles TI - Regularity of push-forward of Monge–Ampère measures JO - Annales de l'Institut Fourier PY - 2018 SP - 2965 EP - 2979 VL - 68 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3233/ DO - 10.5802/aif.3233 LA - en ID - AIF_2018__68_7_2965_0 ER -
%0 Journal Article %A Di Nezza, Eleonora %A Favre, Charles %T Regularity of push-forward of Monge–Ampère measures %J Annales de l'Institut Fourier %D 2018 %P 2965-2979 %V 68 %N 7 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3233/ %R 10.5802/aif.3233 %G en %F AIF_2018__68_7_2965_0
Di Nezza, Eleonora; Favre, Charles. Regularity of push-forward of Monge–Ampère measures. Annales de l'Institut Fourier, Tome 68 (2018) no. 7, pp. 2965-2979. doi : 10.5802/aif.3233. https://aif.centre-mersenne.org/articles/10.5802/aif.3233/
[1] Representation Growth and Rational Singularities of the Moduli Space of Local Systems, Invent. Math., Volume 204 (2016) no. 1, pp. 245-316 | Zbl
[2] The Dirichlet problem for the complex Monge-Ampère equation, Invent. Math., Volume 37 (1976), pp. 1-44 | Zbl
[3] Monge–Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry (The University Series in Mathematics), Plenum Press, 1993 | Zbl
[4] Hölder continuous solutions to Monge-Ampère equations, J. Eur. Math. Soc., Volume 16 (2014) no. 4, pp. 619-647 | Zbl
[5] Stability of Monge–Ampère energy classes, J. Geom. Anal., Volume 25 (2014) no. 4, pp. 2565-2589 | Zbl
[6] Finite Pluricomplex energy measures, Potential Anal., Volume 44 (2015) no. 1, pp. 155-167 | Zbl
[7] Open problems in pluripotential theory, Complex Var. Elliptic Equ., Volume 61 (2016) no. 7, pp. 902-930 | Zbl
[8] On stability and continuity of bounded solutions of degenerate complex Monge–Ampère equations over compact Kähler manifolds, Adv. Math., Volume 225 (2010) no. 1, pp. 367-388 | Zbl
[9] Characterization of Monge-Ampère measures with Hölder continuous potential, J. Funct. Anal., Volume 266 (2014), pp. 67-84
[10] Exponential estimates for plurisubharmonic functions and stochastic dynamics, J. Differ. Geom., Volume 84 (2010), pp. 465-488
[11] Degeneration of endomorphisms of the complex projective space in the hybrid space, J. Inst. Math. Jussieu (2018), 43 pages (43 p., published online) | DOI
[12] Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., Volume 15 (2005) no. 4, pp. 607-639
[13] The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442-482
[14] Degenerate Complex Monge–Ampère Equations, EMS Tracts in Mathematics, 26, Société Mathématique de France, 2017, xxiv+472 pages | Zbl
[15] Hölder continuous solutions of the Monge-Ampère equation on compact hermitian manifolds, Ann. Inst. Fourier, Volume 68 (2018) no. 7, pp. 2951-2964
[16] Clôture intégrale des idéaux et équisingularité, Ann. Fac. Sci. Toulouse, Math., Volume 17 (2008) no. 4, pp. 781-859
[17] Modifications, Several complex variables VII: Sheaf theoretic methods in complex analysis (Encyclopaedia of Mathematical Sciences), Volume 74, Springer, 1994, pp. 285-317 | Zbl
[18] Pushforwards of Measures on Real Varieties under Maps with Rational Singularities (2018) (https://arxiv.org/abs/1807.00079v1)
[19] Canonical measures and Kähler-Ricci flow, J. Am. Math. Soc., Volume 25 (2012) no. 2, pp. 303-353
[20] Adiabatic limits of Ricci-flat Kähler metrics, J. Differ. Geom., Volume 84 (2010) no. 2, pp. 427-453
Cité par Sources :