On montre que les courbures Lipschitz–Killing locales d’un ensemble définissable dans une structure o-minimale polynomialement bornée sont continues le long des strates d’une stratification de Whitney. De plus, si la stratification est -régulière les courbures Lipschitz–Killing locales sont localement lipschitziennes dans une structure o-minimale arbitraire.
In the paper we prove that the local Lipschitz–Killing curvatures of a definable set in a polynomially bounded o-minimal structure are continuous along the strata of a Whitney stratification. Moreover, if the stratification is -regular the local Lipschitz–Killing curvatures are locally Lipschitz in any o-minimal structure.
Révisé le :
Accepté le :
Publié le :
Keywords: o-minimal structures, definable sets, stratifications, local Lipschitz–Killing curvatures
Mot clés : semblable banalité, autosimilarité logarithmique, loi de Gauß
Nguyen, Nhan 1 ; Valette, Guillaume 2
@article{AIF_2018__68_5_2253_0, author = {Nguyen, Nhan and Valette, Guillaume}, title = {Whitney stratifications and the continuity of local {Lipschitz{\textendash}Killing} curvatures}, journal = {Annales de l'Institut Fourier}, pages = {2253--2276}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {5}, year = {2018}, doi = {10.5802/aif.3208}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3208/} }
TY - JOUR AU - Nguyen, Nhan AU - Valette, Guillaume TI - Whitney stratifications and the continuity of local Lipschitz–Killing curvatures JO - Annales de l'Institut Fourier PY - 2018 SP - 2253 EP - 2276 VL - 68 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3208/ DO - 10.5802/aif.3208 LA - en ID - AIF_2018__68_5_2253_0 ER -
%0 Journal Article %A Nguyen, Nhan %A Valette, Guillaume %T Whitney stratifications and the continuity of local Lipschitz–Killing curvatures %J Annales de l'Institut Fourier %D 2018 %P 2253-2276 %V 68 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3208/ %R 10.5802/aif.3208 %G en %F AIF_2018__68_5_2253_0
Nguyen, Nhan; Valette, Guillaume. Whitney stratifications and the continuity of local Lipschitz–Killing curvatures. Annales de l'Institut Fourier, Tome 68 (2018) no. 5, pp. 2253-2276. doi : 10.5802/aif.3208. https://aif.centre-mersenne.org/articles/10.5802/aif.3208/
[1] Courbures intrinsèques dans les catégories analytico-géométriques, Ann. Inst. Fourier, Volume 53 (2003) no. 6, pp. 1897-1924 http://aif.cedram.org/item?id=aif_2003__53_6_1897_0 | MR | Zbl
[2] Integral geometry of tame sets, Geom. Dedicata, Volume 82 (2000) no. 1-3, pp. 285-323 | DOI | MR | Zbl
[3] Whitney -regularity is weaker than Kuo’s ratio test for real algebraic stratifications, Math. Scand., Volume 45 (1979) no. 1, pp. 27-34 | DOI | MR | Zbl
[4] Équisingularité réelle: nombres de Lelong et images polaires, Ann. Sci. Éc. Norm. Supér., Volume 33 (2000) no. 6, pp. 757-788 | DOI | MR | Zbl
[5] An introduction to o-minimal geometry, Singularity theory and its applications, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligraci Internazionali, Pisa, 2000
[6] Équisingularité réelle. II. Invariants locaux et conditions de régularité, Ann. Sci. Éc. Norm. Supér., Volume 41 (2008) no. 2, pp. 221-269 | DOI | MR | Zbl
[7] Intersection theory in analytic geometry, Math. Ann., Volume 180 (1969), pp. 175-204 | DOI | MR | Zbl
[8] Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, 1998, x+180 pages | DOI | MR | Zbl
[9] Geometric categories and o-minimal structures, Duke Math. J., Volume 84 (1996) no. 2, pp. 497-540 | DOI | MR | Zbl
[10] Euler characteristic and Lipschitz-Killing curvatures of closed semi-algebraic sets, Geom. Dedicata, Volume 158 (2012), pp. 167-189 | DOI | MR | Zbl
[11] Stratified critical points on the real Milnor fibre and integral-geometric formulas, J. Singul., Volume 13 (2015), pp. 87-106 | DOI | MR | Zbl
[12] Euler obstruction and Lipschitz-Killing curvatures, Isr. J. Math., Volume 213 (2016) no. 1, pp. 109-137 | DOI | MR | Zbl
[13] Lipschitz-Killing curvatures and polar images (2017) (to appear in Adv. Geom.)
[14] Curvature measures of subanalytic sets, Am. J. Math., Volume 116 (1994) no. 4, pp. 819-880 | DOI | MR | Zbl
[15] Topological stability of smooth mappings, Lecture Notes in Math., 552, Springer, 1976, iv+155 pages | MR | Zbl
[16] Whitney, Kuo-Verdier and Lipschitz stratifications for the surfaces , Topology Appl., Volume 234 (2018), pp. 335-347 | Zbl
[17] Determination of Lipschitz stratifications for the surfaces , Singularités Franco-Japonaises (Séminaires et Congrès), Volume 10, Société Mathématique de France, 2005, pp. 127-138 | MR | Zbl
[18] Quasi-convex decomposition in o-minimal structures. Application to the gradient conjecture, Singularity theory and its applications (Advanced Studies in Pure Mathematics), Volume 43, Mathematical Society of Japan, 2006, pp. 137-177 | MR | Zbl
[19] Densité des ensembles sous-analytiques, Ann. Inst. Fourier, Volume 39 (1989) no. 3, pp. 753-771 | MR | Zbl
[20] Verdier and strict Thom stratifications in o-minimal structures, Ill. J. Math., Volume 42 (1998) no. 2, pp. 347-356 http://projecteuclid.org/euclid.ijm/1256045049 | MR | Zbl
[21] o-minimal structures, The Japanese-Australian Workshop on Real and Complex Singularities—JARCS III (Proc. Centre Math. Appl. Austral. Nat. Univ.), Volume 43, Australian National University, 2010, pp. 19-30 | MR | Zbl
[22] Notes on topological stability, Bull. Am. Math. Soc., Volume 49 (2012) no. 4, pp. 475-506 | DOI | MR | Zbl
[23] Structure métrique et géométrie des ensembles définissables dans des structures o-minimales, Université Aix-Marseille (France) (2015) (Ph. D. Thesis)
[24] Cône normal et régularités de Kuo-Verdier, Bull. Soc. Math. Fr., Volume 130 (2002) no. 1, pp. 71-85 | MR | Zbl
[25] Continuous controlled vector fields, Singularity theory (Liverpool, 1996) (London Mathematical Society Lecture Note Series), Volume 263, Cambridge University Press, 1999, pp. 189-197 | MR | Zbl
[26] Geometry of subanalytic and semialgebraic sets, Progress in Mathematics, 150, Birkhäuser, 1997, xii+431 pages | DOI | MR | Zbl
[27] Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whitney, Algebraic geometry (La Rábida, 1981) (Lecture Notes in Math.), Volume 961, Springer, 1982, pp. 314-491 | DOI | MR | Zbl
[28] Whitney stratifications: faults and detectors, University of Warwick (UK) (1977) (Ph. D. Thesis)
[29] On the local geometry of definably stratified sets, Ordered algebraic structures and related topics (Contemporary Mathematics), Volume 697, American Mathematical Society, 2017, pp. 349-366 | Zbl
[30] Volume, Whitney conditions and Lelong number, Ann. Pol. Math., Volume 93 (2008) no. 1, pp. 1-16 | DOI | MR | Zbl
Cité par Sources :