Nous étudions des paires log-canoniques relatives telles que des diviseurs log-canoniques sont relativement triviaux. Nous fixons une telle paire et montrons la théorie des modèles minimaux pour la paire , assumant la théorie des modèles minimaux pour toute paire Kawamata log-terminale telle que la dimension de cette paire n’est pas aussi grande que . Nous montrons aussi la finitude de l’anneau log-canonique de toute paire log-canonique telle que la dimension de cette paire est cinq et cette paire n’est pas de type log-général.
We study relative log canonical pairs with relatively trivial log canonical divisors. We fix such a pair and establish the minimal model theory for the pair assuming the minimal model theory for all Kawamata log terminal pairs whose dimension is not greater than . We also show the finite generation of log canonical rings for log canonical pairs of dimension five which are not of log general type.
Révisé le :
Accepté le :
Publié le :
Keywords: good minimal model, Mori fiber space, log canonical pair, relatively trivial log canonical divisor
Mot clés : un bon modèle minimal, une fibration de Mori, une paire log-canonique, un diviseur log-canonique relativement trivial
Hashizume, Kenta 1
@article{AIF_2018__68_5_2069_0, author = {Hashizume, Kenta}, title = {Minimal model theory for relatively trivial log canonical pairs}, journal = {Annales de l'Institut Fourier}, pages = {2069--2107}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {5}, year = {2018}, doi = {10.5802/aif.3203}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3203/} }
TY - JOUR AU - Hashizume, Kenta TI - Minimal model theory for relatively trivial log canonical pairs JO - Annales de l'Institut Fourier PY - 2018 SP - 2069 EP - 2107 VL - 68 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3203/ DO - 10.5802/aif.3203 LA - en ID - AIF_2018__68_5_2069_0 ER -
%0 Journal Article %A Hashizume, Kenta %T Minimal model theory for relatively trivial log canonical pairs %J Annales de l'Institut Fourier %D 2018 %P 2069-2107 %V 68 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3203/ %R 10.5802/aif.3203 %G en %F AIF_2018__68_5_2069_0
Hashizume, Kenta. Minimal model theory for relatively trivial log canonical pairs. Annales de l'Institut Fourier, Tome 68 (2018) no. 5, pp. 2069-2107. doi : 10.5802/aif.3203. https://aif.centre-mersenne.org/articles/10.5802/aif.3203/
[1] Weak semistable reduction in characteristic , Invent. Math., Volume 139 (2000) no. 2, pp. 241-273 | Zbl
[2] The moduli -divisor of an lc-trivial fibration, Compos. Math., Volume 141 (2005) no. 2, pp. 385-403 | Zbl
[3] On existence of log minimal models II, J. Reine Angew. Math., Volume 658 (2011), pp. 99-113 | Zbl
[4] Existence of log canonical flips and a special LMMP, Publ. Math., Inst. Hautes Étud. Sci., Volume 115 (2012), pp. 325-368 | Zbl
[5] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | Zbl
[6] Log canonical pairs with good augmented base loci, Compos. Math., Volume 150 (2014) no. 4, pp. 579-592 | Zbl
[7] Extension theorems, non-vanishing and the existence of good minimal models, Acta Math., Volume 210 (2013) no. 2, pp. 203-259 | Zbl
[8] Special termination and reduction to pl flips, Flips for -folds and -folds (Oxford Lecture Series in Mathematics and its Applications), Volume 35, Oxford University Press, 2007, pp. 63-75 | Zbl
[9] Finite generation of the log canonical ring in dimension four, Kyoto J. Math., Volume 50 (2010) no. 4, pp. 671-684 | Zbl
[10] Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., Volume 47 (2011) no. 3, pp. 727-789 | Zbl
[11] Some remarks on the minimal model program for log canonical pairs, J. Math. Sci., Tokyo, Volume 22 (2015) no. 1, pp. 149-192 | Zbl
[12] Foundations of the minimal model program, MSJ Memoirs, 35, Mathematical Society of Japan, 2017, xv+289 pages | Zbl
[13] On canonical bundle formulas and subadjunctions, Mich. Math. J., Volume 61 (2012) no. 2, pp. 255-264 | Zbl
[14] Log pluricanonical representations and the abundance conjecture, Compos. Math., Volume 150 (2014) no. 4, pp. 593-620 | Zbl
[15] On the moduli b-divisors of lc-trivial fibrations, Ann. Inst. Fourier, Volume 64 (2014) no. 4, pp. 1721-1735 | Zbl
[16] On log canonical rings, Higher dimensional algebraic geometry (Advanced Studies in Pure Mathematics), Volume 74, Mathematical Society of Japan, 2017, pp. 159-169 | Zbl
[17] A canonical bundle formula, J. Differ. Geom., Volume 56 (2000) no. 1, pp. 167-188 | Zbl
[18] Remarks on the non-vanishing conjecture, Algebraic geometry in east Asia—Taipei 2011 (Advanced Studies in Pure Mathematics), Volume 65, Mathematical Society of Japan, 2015, pp. 107-116 | Zbl
[19] Reduction maps and minimal model theory, Compos. Math., Volume 149 (2013) no. 2, pp. 295-308 | Zbl
[20] ACC for log canonical thresholds, Ann. Math., Volume 180 (2014) no. 2, pp. 523-571 | Zbl
[21] Existence of log canonical closures, Invent. Math., Volume 192 (2013) no. 1, pp. 161-195 | Zbl
[22] Remarks on the abundance conjecture, Proc. Japan Acad. Ser. A Math. Sci., Volume 92 (2016) no. 9, pp. 101-106 | Zbl
[23] Variation of mixed Hodge structures and the positivity for algebraic fiber spaces, Algebraic geometry in east Asia—Taipei 2011 (Advanced Studies in Pure Mathematics), Volume 65, Mathematical Society of Japan, 2015, pp. 27-57 | Zbl
[24] Log canonical singularities are Du Bois, J. Am. Math. Soc., Volume 23 (2010) no. 3, pp. 791-813 | Zbl
[25] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages | Zbl
[26] Varieties fibered by good minimal models, Math. Ann., Volume 350 (2011) no. 3, pp. 533-547 | Zbl
[27] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, 2004, xiv+277 pages | Zbl
Cité par Sources :