La commabilité est la relation d’équivalence entre groupes localement compacts la plus fine telle que et sont équivalents dès qu’il existe un homomorphisme continu, propre et d’image cocompacte. Répondant à une question de Cornulier, nous montrons que tous les groupes localement compacts non-élémentaires agissant sur des arbres simpliciaux localement finis sont commables, renforçant les formes précédentes de rigidité quasi-isométrique pour les arbres. De plus, nous montrons que 6 homomorphismes suffisent toujours, et donnons le premier exemple d’une paire de groupes localement compacts qui sont commables mais n’ayant pas de commation constituée de moins de 6 homomorphismes. Notre rigidité quasi-isométrique forte s’applique également à des produits d’espace symétriques et d’immeubles euclidiens, dont certains facteurs sont éventuellement des arbres.
Commability is the finest equivalence relation between locally compact groups such that and are equivalent whenever there is a continuous proper homomorphism with cocompact image. Answering a question of Cornulier, we show that all non-elementary locally compact groups acting geometrically on locally finite simplicial trees are commable, thereby strengthening previous forms of quasi-isometric rigidity for trees. We further show that 6 homomorphisms always suffice, and provide the first example of a pair of locally compact groups which are commable but without commation consisting of less than 6 homomorphisms. Our strong quasi-isometric rigidity also applies to products of symmetric spaces and Euclidean buildings, possibly with some factors being trees.
Accepté le :
Publié le :
Keywords: Commability, groups acting on trees, quasi-isometric rigidity
Mot clés : Commabilité, groupes agissant sur des arbres, rigidité quasi-isométrique
Carette, Mathieu 1
@article{AIF_2018__68_4_1365_0, author = {Carette, Mathieu}, title = {Commability of groups quasi-isometric to trees}, journal = {Annales de l'Institut Fourier}, pages = {1365--1398}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {4}, year = {2018}, doi = {10.5802/aif.3190}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3190/} }
TY - JOUR AU - Carette, Mathieu TI - Commability of groups quasi-isometric to trees JO - Annales de l'Institut Fourier PY - 2018 SP - 1365 EP - 1398 VL - 68 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3190/ DO - 10.5802/aif.3190 LA - en ID - AIF_2018__68_4_1365_0 ER -
%0 Journal Article %A Carette, Mathieu %T Commability of groups quasi-isometric to trees %J Annales de l'Institut Fourier %D 2018 %P 1365-1398 %V 68 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3190/ %R 10.5802/aif.3190 %G en %F AIF_2018__68_4_1365_0
Carette, Mathieu. Commability of groups quasi-isometric to trees. Annales de l'Institut Fourier, Tome 68 (2018) no. 4, pp. 1365-1398. doi : 10.5802/aif.3190. https://aif.centre-mersenne.org/articles/10.5802/aif.3190/
[1] Covering theory for graphs of groups, J. Pure Appl. Algebra, Volume 89 (1993) no. 1-2, pp. 3-47 | DOI | MR
[2] Uniform tree lattices, J. Am. Math. Soc., Volume 3 (1990) no. 4, pp. 843-902 | DOI | MR
[3] Rigidity of group actions on locally finite trees, Proc. Lond. Math. Soc., Volume 69 (1994) no. 3, pp. 541-575 | DOI | MR
[4] Amenable hyperbolic groups, J. Eur. Math. Soc., Volume 17 (2015) no. 11, pp. 2903-2947 | Zbl
[5] Locally compact convergence groups and -transitive actions, Math. Z., Volume 278 (2014) no. 3-4, pp. 795-827 | DOI | MR
[6] Geometric rigidity and flexibility for groups acting on trees (In preparation)
[7] Commability and focal locally compact groups, Indiana Univ. Math. J., Volume 64 (2015) no. 1, pp. 115-150 | Zbl
[8] On the quasi-isometric classification of focal hyperbolic groups, New Directions in locally compact groups (London Mathematical Society Lecture Note Series), Volume 447, Cambridge University Press, 2018, pp. 275-342 | DOI
[9] Deformation and rigidity of simplicial group actions on trees, Geom. Topol., Volume 6 (2002), p. 219-267 (electronic) | DOI | MR
[10] Induced quasi-actions: a remark, Proc. Am. Math. Soc., Volume 137 (2009) no. 5, pp. 1561-1567 | DOI | MR
[11] Maximally symmetric trees, Geom. Dedicata, Volume 92 (2002), pp. 195-233 (Dedicated to John Stallings on the occasion of his 65th birthday) | DOI | MR
[12] Quasi-actions on trees. I. Bounded valence, Ann. Math., Volume 158 (2003) no. 1, pp. 115-164 | DOI | MR
[13] Trees, Springer, Berlin, 1980, ix+142 pages (Translated from the French by John Stillwell) | MR
[14] Sur le groupe des automorphismes d’un arbre, Essays on topology and related topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 188-211 | MR
Cité par Sources :