The quasinormal frequencies of massive scalar fields on Kerr–AdS black holes are identified with poles of a certain meromorphic family of operators, once boundary conditions are specified at the conformal boundary. Consequently, the quasinormal frequencies form a discrete subset of the complex plane and the corresponding poles are of finite rank. This result holds for a broad class of elliptic boundary conditions, with no restrictions on the rotation speed of the black hole.
Les fréquences quasinormales des champs scalaires massifs sur les trous noirs Kerr–AdS sont identifiées avec les pôles d’une certaine famille d’opérateurs méromorphes, une fois que les conditions limites sont spécifiées à la limite conforme. Par conséquent, les fréquences quasinormales forment un sous-ensemble discret du plan complexe et les pôles correspondants sont de rang fini. Ce résultat réside dans une large classe de conditions aux limites elliptiques, sans aucune restriction sur la vitesse de rotation du trou noir.
Revised:
Accepted:
Published online:
Keywords: Kerr–AdS black holes, quasinormal modes, scattering theory
Mot clés : Kerr-AdS trous noirs, modes quasinormaux, théorie de la diffusion
@article{AIF_2018__68_3_1125_0, author = {Gannot, Oran}, title = {A global definition of quasinormal modes for {Kerr{\textendash}AdS} black holes}, journal = {Annales de l'Institut Fourier}, pages = {1125--1167}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {3}, year = {2018}, doi = {10.5802/aif.3186}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3186/} }
TY - JOUR AU - Gannot, Oran TI - A global definition of quasinormal modes for Kerr–AdS black holes JO - Annales de l'Institut Fourier PY - 2018 SP - 1125 EP - 1167 VL - 68 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3186/ DO - 10.5802/aif.3186 LA - en ID - AIF_2018__68_3_1125_0 ER -
%0 Journal Article %A Gannot, Oran %T A global definition of quasinormal modes for Kerr–AdS black holes %J Annales de l'Institut Fourier %D 2018 %P 1125-1167 %V 68 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3186/ %R 10.5802/aif.3186 %G en %F AIF_2018__68_3_1125_0
Gannot, Oran. A global definition of quasinormal modes for Kerr–AdS black holes. Annales de l'Institut Fourier, Volume 68 (2018) no. 3, pp. 1125-1167. doi : 10.5802/aif.3186. https://aif.centre-mersenne.org/articles/10.5802/aif.3186/
[1] Quantum field theory in anti-de Sitter space-time, Phys. Rev. D, Volume 18 (1978), pp. 3565-3576 | DOI
[2] Gravitational scattering of electromagnetic field by Schwarzschild black-hole, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 54 (1991) no. 3, pp. 261-320 | Zbl
[3] Les résonances d’un trou noir de Schwarzschild, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 59 (1993) no. 1, pp. 3-68 | Zbl
[4] Holographic Thermalization, Stability of Anti–de Sitter Space, and the Fermi-Pasta-Ulam Paradox, Phys. Rev. Lett., Volume 113 (2014) no. 7, 071601 (Article ID 071601) | DOI
[5] ‘Double-trace’ deformations, boundary conditions and spacetime singularities, J. High Energy Phys., Volume 2002 (2002) no. 05, 034 (Article ID 034) | DOI
[6] Is AdS stable?, Gen. Relativ. Gravitation, Volume 46 (2014) no. 5, 1724, 14 pages (Article ID 1724, 14 p.) | DOI | Zbl
[7] Resonant Dynamics and the Instability of Anti–de Sitter Spacetime, Phys. Rev. Lett., Volume 115 (2015) no. 8, 081103 (Article ID 08103) | DOI
[8] Weakly Turbulent Instability of Anti de Sitter Spacetime, Phys. Rev. Lett., Volume 107 (2011), 031102 (Article ID 031102) | DOI | Zbl
[9] Decay and Non-Decay of the Local Energy for the Wave Equation on the De Sitter-Schwarzschild Metric, Commun. Math. Phys., Volume 282 (2008) no. 3, pp. 697-719 | DOI | Zbl
[10] Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett., Volume 115 (1982), pp. 197-201 | DOI
[11] Stability in gauged extended supergravity, Ann. Phys., Volume 144 (1982) no. 2, pp. 249-281 | DOI | Zbl
[12] Conserved quantities and dual turbulent cascades in anti–de Sitter spacetime, Phys. Rev. D, Volume 91 (2015) no. 6, 064026 (Article ID 064026) | DOI
[13] Holographic thermalization, quasinormal modes and superradiance in Kerr–AdS, J. High Energy Phys., Volume 2014 (2014), 183, 71 pages (Article ID 183, 71 p.) | DOI | Zbl
[14] Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Commun. Math. Phys., Volume 10 (1968) no. 4, pp. 280-310 | DOI | Zbl
[15] Renormalization group, secular term resummation and AdS (in)stability, J. High Energy Phys., Volume 2014 (2014) no. 10, 048, 30 pages (Article ID 048, 30 p.) | DOI | Zbl
[16] Renormalization, averaging, conservation laws and AdS (in)stability, J. High Energy Phys., Volume 2015 (2015) no. 01, 108 (Article ID 108) | DOI
[17] On the Nonlinear Stability of Asymptotically Anti-de Sitter Solutions, Class. Quant. Grav., Volume 29 (2012), 235019, 24 pages (Article ID 235019, 24 p.) | DOI | Zbl
[18] Gravitational turbulent instability of anti-de Sitter space, Class. Quant. Grav., Volume 29 (2012) no. 19, 194002, 7 pages (Article ID 194002, 7 p.) | DOI | Zbl
[19] Boundary conditions for Kerr–AdS perturbations, J. High Energy Phys., Volume 2013 (2013) no. 10, 156, 37 pages (Article ID 156, 37 p.) | DOI | Zbl
[20] Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999, xi+227 pages | Zbl
[21] Quasi-Normal Modes and Exponential Energy Decay for the Kerr-de Sitter Black Hole, Commun. Math. Phys., Volume 306 (2011) no. 1, pp. 119-163 | DOI | Zbl
[22] Asymptotic Distribution of Quasi-Normal Modes for Kerr-de Sitter Black Holes, Ann. Henri Poincaré, Volume 13 (2012) no. 5, pp. 1101-1166 | DOI | Zbl
[23] Mathematical theory of scattering resonances (http://math.mit.edu/~dyatlov/res/res_20180326.pdf)
[24] Einstein equations and conformal structure: existence of anti-de Sitter-type space-times, J. Geom. Phys., Volume 17 (1995) no. 2, pp. 125-184 | DOI | Zbl
[25] Quasinormal Modes for Schwarzschild-AdS Black Holes: Exponential Convergence to the Real Axis, Commun. Math. Phys., Volume 330 (2014) no. 2, pp. 771-799 | DOI | Zbl
[26] Elliptic boundary value problems for Bessel operators, with applications to anti-de Sitter spacetimes (2015) (https://arxiv.org/abs/1507.02794)
[27] Existence of Quasinormal Modes for Kerr–AdS Black Holes, Ann. Henri Poincaré, Volume 18 (2017) no. 8, pp. 1-32 | DOI | Zbl
[28] Gravitational quasinormal modes for Kerr anti-de Sitter black holes, Class. Quant. Grav., Volume 22 (2005) no. 9, pp. 1803-1824 | DOI | Zbl
[29] Rotation and the AdS/CFT correspondence, Phys. Rev. D, Volume 59 (1999), 064005 (Article ID 064005) | DOI
[30] Semilinear wave equations on asymptotically de Sitter, Kerr-de Sitter and Minkowski spacetimes, Anal. PDE, Volume 8 (2013) no. 8, pp. 1807-1890 | DOI | Zbl
[31] Asymptotics for the wave equation on differential forms on Kerr-de Sitter space (2015) (https://arxiv.org/abs/1502.03179)
[32] Asymptotic properties of linear field equations in anti-de Sitter space (2015) (https://arxiv.org/abs/1502.04965)
[33] Decay Properties of Klein–Gordon Fields on Kerr–AdS Spacetimes, Commun. Pure Appl. Math., Volume 66 (2013) no. 11, pp. 1751-1802 | DOI | Zbl
[34] Stability of Schwarzschild–AdS for the spherically symmetric Einstein-Klein-Gordon system, Commun. Math. Phys., Volume 317 (2013) no. 1, pp. 205-251 | DOI | Zbl
[35] Quasimodes and a lower bound on the uniform energy decay rate for Kerr–AdS spacetimes, Anal. PDE, Volume 7 (2014) no. 5, pp. 1057-1090 | DOI | Zbl
[36] Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes, J. Funct. Anal., Volume 266 (2014) no. 4, pp. 2436-2485 | DOI | Zbl
[37] The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, 1985, viii+525 pages | Zbl
[38] The Analysis of Linear Partial Differential Operators IV: Fourier Integral Operators, Classics in Mathematics, Springer, 2009, vii+352 pages | Zbl
[39] Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D, Volume 62 (2000), 024027, 11 pages (Article ID 024027, 11 p.) | DOI
[40] Dynamics in nonglobally hyperbolic static space-times III: Anti-de Sitter space-time, Class. Quant. Grav., Volume 21 (2004) no. 12, pp. 2981-3014 | DOI
[41] Quasinormal modes of black holes: From astrophysics to string theory, Rev. Mod. Phys., Volume 83 (2011), pp. 793-836 | DOI
[42] Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, Spectral and scattering theory (Lecture Notes in Pure and Applied Mathematics), Marcel Dekker AG, 1994, p. 85-85 | Zbl
[43] Boundary problems for pseudo-differential operators, Acta Math., Volume 126 (1971) no. 1, pp. 11-51 | DOI | Zbl
[44] Introduction to Asymptotics and Special Functions, Elsevier, 2014
[45] Distribution of resonances for spherical black holes, Math. Res. Lett, Volume 4 (1997) no. 1, pp. 103-121 | DOI | Zbl
[46] Pseudodifferential Operators and Spectral Theory, Springer, 2001, xii+288 pages | Zbl
[47] Partial Differential Equations I: Basic Theory, Springer, 1996
[48] The wave equation on asymptotically de Sitter-like spaces, Adv. Math., Volume 223 (2010) no. 1, pp. 49-97 | DOI | Zbl
[49] Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces, Invent. Math., Volume 194 (2013) no. 2, pp. 381-513 | DOI | Zbl
[50] The Massive Wave Equation in Asymptotically AdS Spacetimes, Commun. Math. Phys., Volume 321 (2013) no. 1, pp. 85-111 | DOI | Zbl
[51] On Quasinormal Modes of Asymptotically Anti-de Sitter Black Holes, Commun. Math. Phys., Volume 333 (2015) no. 2, pp. 959-1035 | DOI | Zbl
[52] Anti-de Sitter space and holography, Adv. Theor. Math. Phys., Volume 2 (1998) no. 2, pp. 253-291 | DOI | Zbl
[53] Multi-trace operators, boundary conditions, and AdS/CFT correspondence (2001) (https://arxiv.org/abs/hep-th/0112258)
[54] Semiclassical Analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | Zbl
[55] Resonances for asymptotically hyperbolic manifolds: Vasy’s method revisited, J. Spectr. Theory, Volume 6 (2016) no. 4, pp. 1087-1114 | DOI | Zbl
Cited by Sources: