[Résolvante et Mesure Spectrale sur une Variété Asymptotiquement Hyperbolique Non-captant II : Mesure Spectrale, Théorème de Restriction, Multiplicateurs spectraux]
Nous considérons le Laplacien sur une variété asymptotiquement hyperbolique au sens de Mazzeo et Melrose. Nous donnons des estimations ponctuelles sur le noyau de Schwartz de la mesure spectrale pour l’opérateur sur ces variétés, sous l’hypothèse qu’il n’y ni trajectoires captées dans ni résonance au bas du spectre. Nous utilisons la construction de la résolvante par Mazzeo et Melrose, Sá Barreto et Vasy, Wang, et nous-mêmes.
Nous donnons deux applications des estimations de la mesure spectrale. La première, qui prolonge l’étude de Guillarmou et Sikora avec le deuxième auteur dans le cas asymptotiquement conique, est un théorème de restriction : c’est-à-dire une borne sur la norme d’opérateur de la mesure spectrale. La seconde est un résultat de type multiplicateur spectral sous l’hypothèse additionnelle que est à courbure strictement négative partout. Plus précisément, nous donnons une estimation sur les fonctions du laplacien de la forme en termes de normes de la fonction . Par rapport au cas asymptotiquement conique, notre résultat de multiplicateur spectral est plus faible, mais l’estimation de restriction est plus forte.
We consider the Laplacian on an asymptotically hyperbolic manifold , as defined by Mazzeo and Melrose. We give pointwise bounds on the Schwartz kernel of the spectral measure for the operator on such manifolds, under the assumptions that is nontrapping and there is no resonance at the bottom of the spectrum. This uses the construction of the resolvent given by Mazzeo and Melrose, Melrose, Sá Barreto and Vasy, the present authors, and Wang.
We give two applications of the spectral measure estimates. The first, following work due to Guillarmou and Sikora with the second author in the asymptotically conic case, is a restriction theorem, that is, a operator norm bound on the spectral measure. The second is a spectral multiplier result under the additional assumption that has negative curvature everywhere, that is, a bound on functions of the Laplacian of the form , in terms of norms of the function . Compared to the asymptotically conic case, our spectral multiplier result is weaker, but the restriction estimate is stronger.
Révisé le :
Accepté le :
Publié le :
Keywords: Asymptotically hyperbolic manifolds, spectral measure, restriction theorem, spectral multiplier
Mot clés : Variété asymptotiquement hyperbolique, mesure spectrale, théorème de restriction, multiplicateur spectral
Chen, Xi 1 ; Hassell, Andrew 2
@article{AIF_2018__68_3_1011_0, author = {Chen, Xi and Hassell, Andrew}, title = {Resolvent and {Spectral} {Measure} on {Non-Trapping} {Asymptotically} {Hyperbolic} {Manifolds} {II:} {Spectral} {Measure,} {Restriction} {Theorem,} {Spectral} {Multipliers}}, journal = {Annales de l'Institut Fourier}, pages = {1011--1075}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {3}, year = {2018}, doi = {10.5802/aif.3183}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3183/} }
TY - JOUR AU - Chen, Xi AU - Hassell, Andrew TI - Resolvent and Spectral Measure on Non-Trapping Asymptotically Hyperbolic Manifolds II: Spectral Measure, Restriction Theorem, Spectral Multipliers JO - Annales de l'Institut Fourier PY - 2018 SP - 1011 EP - 1075 VL - 68 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3183/ DO - 10.5802/aif.3183 LA - en ID - AIF_2018__68_3_1011_0 ER -
%0 Journal Article %A Chen, Xi %A Hassell, Andrew %T Resolvent and Spectral Measure on Non-Trapping Asymptotically Hyperbolic Manifolds II: Spectral Measure, Restriction Theorem, Spectral Multipliers %J Annales de l'Institut Fourier %D 2018 %P 1011-1075 %V 68 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3183/ %R 10.5802/aif.3183 %G en %F AIF_2018__68_3_1011_0
Chen, Xi; Hassell, Andrew. Resolvent and Spectral Measure on Non-Trapping Asymptotically Hyperbolic Manifolds II: Spectral Measure, Restriction Theorem, Spectral Multipliers. Annales de l'Institut Fourier, Tome 68 (2018) no. 3, pp. 1011-1075. doi : 10.5802/aif.3183. https://aif.centre-mersenne.org/articles/10.5802/aif.3183/
[1] Nonlinear Schrödinger equation on real hyperbolic spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 5, pp. 1853-1869 | DOI | Zbl
[2] Wave and Klein-Gordon equations on hyperbolic spaces, Anal. PDE, Volume 7 (2014) no. 4, pp. 953-995 | DOI | Zbl
[3] Semi-classical functional calculus on manifolds with ends and weighted estimates, Ann. Inst. Fourier, Volume 61 (2011) no. 3, pp. 1181-1223 | DOI | Zbl
[4] Absence of eigenvalue at the bottom of the continuous spectrum on asymptotically hyperbolic manifolds, Ann. Global Anal. Geom., Volume 44 (2013) no. 2, pp. 115-136 | DOI | Zbl
[5] The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one, theta functions, trace formulas and the Selberg zeta function, with an appendix by Andreas Juhl, Ann. Global Anal. Geom., Volume 4 (1994), pp. 357-405 | DOI | Zbl
[6] Strichartz estimates without loss on manifolds with hyperbolic trapped geodesics, Geom. Funct. Anal., Volume 20 (2010), pp. 627-656 | DOI | Zbl
[7] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom., Volume 17 (1982), pp. 15-53 | DOI | Zbl
[8] Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds III: Global-in-Time Strichartz estimates without loss, Ann. Inst. Henri Poincaré, Anal. Non Linéaire (2017) (https://doi.org/10.1016/j.anihpc.2017.08.003) | DOI
[9] Stein-Tomas restriction theorem via spectral measure on metric measure spaces, Math. Z. (2017) (https://doi.org/10.1007/s00209-017-1976-y) | DOI
[10] Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds I: Resolvent construction at high energy, Commun. Partial Differ. Equations, Volume 41 (2016) no. 3, pp. 515-578 | DOI | Zbl
[11] -multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. USA, Volume 10 (1974), pp. 3911-3912 | DOI | Zbl
[12] Heat kernel bounds on hyperbolic space and Kleinian groups, Proc. Lond. Math. Soc., Volume 57 (1988) no. 1, pp. 182-208 | DOI | Zbl
[13] Scattering matrix in conformal geometry, Invent. Math., Volume 152 (2003), pp. 89-118 | DOI | Zbl
[14] Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J., Volume 129 (2005) no. 1, pp. 1-37 | DOI | Zbl
[15] Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds II, Annales de l’Institut Fourier, Volume 59 (2009) no. 4, pp. 1553-1610 | DOI | Zbl
[16] Uniform Sobolev estimates for non-trapping metrics, J. Inst. Math. Jussieu, Volume 13 (2014) no. 3, pp. 599-632 | DOI | Zbl
[17] Restriction and spectral multiplier theorems on asymptotically conic manifolds, Anal. PDE, Volume 6 (2013) no. 4, pp. 893-950 | DOI | Zbl
[18] The spectral projections and the resolvent for scattering metrics, J. Anal. Math., Volume 79 (1999), pp. 241-298 | DOI | Zbl
[19] Global-in-time Strichartz estimates on non-trapping asymptotically conic manifolds, Anal. PDE, Volume 9 (2016) no. 1, pp. 151-192 | DOI | Zbl
[20] The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Grundlehren der Mathematischen Wissenschaften, 256, Springer, 1990 | Zbl
[21] Concerning resolvent estimates for simply connected manifolds of constant curvature, J. Funct. Anal., Volume 267 (2014) no. 12, pp. 4635-4666 | DOI | Zbl
[22] Semilinear Schrödinger flows on hyperbolic spaces: scattering in , Math. Ann., Volume 345 (2009), pp. 133-158 | DOI | Zbl
[23] Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., Volume 46 (1979) no. 3, pp. 583-611 | DOI | Zbl
[24] Inverse scattering on asymptotically hyperbolic manifolds, Acta Math., Volume 184 (2000), pp. 41-86 | DOI | Zbl
[25] Uniformly bounded representations and harmonic analysis of the unimodular group, Am. J. Math., Volume 82 (1960), pp. 1-62 | DOI | Zbl
[26] Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, Am. J. Math., Volume 113 (1991) no. 1, pp. 25-45 | DOI | Zbl
[27] Meromorphic extention of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., Volume 75 (1987), pp. 260-310 | DOI | Zbl
[28] Geometric Scattering Theory, Stanford Lectures, Cambridge University Press, 1995 | Zbl
[29] Analytic continuation and semiclassical resolvent estimates on asymptotically hyperbolic spaces, Commun. Partial Differ. Equations, Volume 39 (2014) no. 3, pp. 452-511 | DOI | Zbl
[30] Scattering metrics and geodesic flow at infinity, Invent. Math., Volume 124 (1996), pp. 389-436 | DOI | Zbl
[31] Methods of Modern Mathematical Physics: I Functional Analysis., Academic Press, New York, 1980 | Zbl
[32] Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, 105, Cambridge University Press, 1993 | Zbl
[33] Interpolation of linear operators, Trans. Am. Math. Soc., Volume 83 (1956), pp. 482-492 | DOI | Zbl
[34] Oscillatory integrals in Fourier analysis, Ann. Math. Stud., Volume 112 (1986), pp. 307-355 | Zbl
[35] -estimates on functions of the Laplace operator, Duke Math. J., Volume 58 (1989) no. 3, pp. 773-793 | DOI | Zbl
[36] Partial Differential Equations II: Qualitative Studies of Linear Equations, Applied Mathematical Sciences, 116, Springer, 1996 | Zbl
[37] A restriction theorem for the Fourier transform, Bull. Am. Math. Soc., Volume 81 (1975), pp. 477-478 | DOI | Zbl
[38] Resolvent and Radiation Fields on Non-trapping Asymptotically Hyperbolic Manifolds (2014) (https://arxiv.org/abs/1410.6936)
[39] Semiclassical Analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012 | Zbl
Cité par Sources :