On caractérise l’octaédralité de la norme d’un espace Lipschitz libre par le biais d’une nouvelle propriété géométrique de l’espace métrique sous-jacent. Nous étudions les espaces métriques avec et sans cette propriété. Par exemple, les espaces sans cette propriété ne se plongent pas isométriquement dans et certains espaces de Banach similaires.
We characterise the octahedrality of Lipschitz-free space norm in terms of a new geometric property of the underlying metric space. We study the metric spaces with and without this property. Quite surprisingly, metric spaces without this property cannot be embedded isometrically into and similar Banach spaces.
Révisé le :
Accepté le :
Publié le :
Keywords: Octahedrality, Free spaces, Uniformly discrete metric spaces
Mot clés : Octaédralité, Espaces Lipschitz libres, Espaces métriques uniformément discrets
Procházka, Antonín 1 ; Rueda Zoca, Abraham 2
@article{AIF_2018__68_2_569_0, author = {Proch\'azka, Anton{\'\i}n and Rueda Zoca, Abraham}, title = {A characterisation of octahedrality in {Lipschitz-free} spaces}, journal = {Annales de l'Institut Fourier}, pages = {569--588}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {68}, number = {2}, year = {2018}, doi = {10.5802/aif.3171}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3171/} }
TY - JOUR AU - Procházka, Antonín AU - Rueda Zoca, Abraham TI - A characterisation of octahedrality in Lipschitz-free spaces JO - Annales de l'Institut Fourier PY - 2018 SP - 569 EP - 588 VL - 68 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3171/ DO - 10.5802/aif.3171 LA - en ID - AIF_2018__68_2_569_0 ER -
%0 Journal Article %A Procházka, Antonín %A Rueda Zoca, Abraham %T A characterisation of octahedrality in Lipschitz-free spaces %J Annales de l'Institut Fourier %D 2018 %P 569-588 %V 68 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3171/ %R 10.5802/aif.3171 %G en %F AIF_2018__68_2_569_0
Procházka, Antonín; Rueda Zoca, Abraham. A characterisation of octahedrality in Lipschitz-free spaces. Annales de l'Institut Fourier, Tome 68 (2018) no. 2, pp. 569-588. doi : 10.5802/aif.3171. https://aif.centre-mersenne.org/articles/10.5802/aif.3171/
[1] Linear extensions, almost isometries, and diameter two, Extr. Math., Volume 30 (2015) no. 2, pp. 135-151 | MR | Zbl
[2] Octahedrality in Lipschitz-free Banach spaces (to appear in Proc. Roy. Soc. Edinburgh Sect. A)
[3] Octahedral norms and convex combination of slices in Banach spaces, J. Funct. Anal., Volume 266 (2014) no. 4, pp. 2424-2435 | DOI | MR | Zbl
[4] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR | Zbl
[5] Thick coverings for the unit ball of a Banach space, Houston J. Math., Volume 41 (2015) no. 1, pp. 177-186 | MR | Zbl
[6] On the structure of Lipschitz-free spaces, Proc. Am. Math. Soc., Volume 144 (2016) no. 9, pp. 3833-3846 | DOI | MR | Zbl
[7] Isometric embedding of into Lipschitz-free spaces and into their duals, Proc. Am. Math. Soc., Volume 145 (2017) no. 8, pp. 3409-3421 | DOI | MR | Zbl
[8] Finitely additive measures and complementability of Lipschitz-free spaces (2017) (https://arxiv.org/abs/1703.08384)
[9] Characterization of metric spaces whose free space is isometric to , Bull. Belg. Math. Soc. - Simon Stevin, Volume 23 (2016) no. 3, pp. 391-400 http://projecteuclid.org/euclid.bbms/1473186513 | MR | Zbl
[10] Banach space theory. The basis for linear and nonlinear analysis, CMS Books in Mathematics, Springer, 2011, xiv+820 pages | DOI | MR | Zbl
[11] Convexity, Optimization and Geometry of the Ball in Banach Spaces, Universidad de Murcia (Spain) (2017) (Ph. D. Thesis)
[12] Some topological and geometrical structures in Banach spaces, Mem. Am. Math. Soc., Volume 70 (1987) no. 378, iv+116 pages | DOI | MR | Zbl
[13] Tree metrics and their Lipschitz-free spaces, Proc. Am. Math. Soc., Volume 138 (2010) no. 12, pp. 4311-4320 | DOI | MR | Zbl
[14] Metric characterization of first Baire class linear forms and octahedral norms, Stud. Math., Volume 95 (1989) no. 1, pp. 1-15 | DOI | MR | Zbl
[15] A survey on Lipschitz-free Banach spaces, Commentat. Math., Volume 55 (2015) no. 2, pp. 89-118 | MR | Zbl
[16] The ball topology and its applications, Banach space theory (Iowa City, IA, 1987) (Contemporary Mathematics), Volume 85, American Mathematical Society, 1989, pp. 195-237 | DOI | MR | Zbl
[17] Lipschitz-free Banach spaces, Stud. Math., Volume 159 (2003) no. 1, pp. 121-141 | DOI | MR | Zbl
[18] On duality of diameter 2 properties, J. Convex Anal., Volume 22 (2015) no. 2, pp. 465-483 | MR | Zbl
[19] The Daugavet property for spaces of Lipschitz functions, Math. Scand., Volume 101 (2007) no. 2, pp. 261-279 corrigendum ibid. 104 (2009), no. 2, p. 319 | DOI | MR | Zbl
[20] Almost Fréchet differentiability of Lipschitz mappings between infinite-dimensional Banach spaces, Proc. Lond. Math. Soc., Volume 84 (2002) no. 3, pp. 711-746 | DOI | MR | Zbl
[21] Lipschitz quotients from metric trees and from Banach spaces containing , J. Funct. Anal., Volume 194 (2002) no. 2, pp. 332-346 | DOI | MR | Zbl
[22] Types and -subspaces, Texas functional analysis seminar 1982–1983 (Austin, Tex.) (Longhorn Notes), University of Texas, 1983, pp. 123-137 | MR | Zbl
[23] Extension of range of functions, Bull. Am. Math. Soc., Volume 40 (1934) no. 12, pp. 837-842 | DOI | MR | Zbl
[24] Geometric theory of Banach spaces. II. Geometry of the unit ball, Uspehi Mat. Nauk, Volume 26 (1971) no. 6(162), pp. 73-149 | MR | Zbl
[25] Lipschitz-free spaces and Schur properties, J. Math. Anal. Appl., Volume 453 (2017) no. 2, pp. 894-907 | DOI | Zbl
[26] Some isometric properties of subspaces of function spaces, Mediterr. J. Math., Volume 10 (2013) no. 4, pp. 1905-1915 | DOI | MR | Zbl
Cité par Sources :