Nous considérons certaines -analogues des transformées de Laplace et Borel et montrons une nouvelle formule d’inversion entre les transformées de -Laplace et de -Borel. Des -analogues des lemmes de type Watson et des opérateurs de convolution sont aussi discutés. Ces résultats donnent un nouveau cadre pour la sommabilité des séries formelles qui sont solutions d’équations aux -différences.
The article discusses certain -analogues of Laplace and Borel transforms, and shows a new inversion formula between -Laplace and -Borel transforms. -Analogues of Watson type lemma and convolution operators are also discussed. These results give a new framework of the summability of formal power series solutions of -difference equations.
Révisé le :
Accepté le :
Publié le :
Keywords: $q$-analogue, $q$-Laplace transform, $q$-Borel transform, $q$-difference equation
Mot clés : $q$-analogue, transformation de $q$-Laplace, transformation de $q$-Borel, équation aux $q$-différence
Tahara, Hidetoshi 1
@article{AIF_2017__67_5_1865_0, author = {Tahara, Hidetoshi}, title = {$q${-Analogues} of {Laplace} and {Borel} transforms by means of $q$-exponentials}, journal = {Annales de l'Institut Fourier}, pages = {1865--1903}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {5}, year = {2017}, doi = {10.5802/aif.3124}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3124/} }
TY - JOUR AU - Tahara, Hidetoshi TI - $q$-Analogues of Laplace and Borel transforms by means of $q$-exponentials JO - Annales de l'Institut Fourier PY - 2017 SP - 1865 EP - 1903 VL - 67 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3124/ DO - 10.5802/aif.3124 LA - en ID - AIF_2017__67_5_1865_0 ER -
%0 Journal Article %A Tahara, Hidetoshi %T $q$-Analogues of Laplace and Borel transforms by means of $q$-exponentials %J Annales de l'Institut Fourier %D 2017 %P 1865-1903 %V 67 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3124/ %R 10.5802/aif.3124 %G en %F AIF_2017__67_5_1865_0
Tahara, Hidetoshi. $q$-Analogues of Laplace and Borel transforms by means of $q$-exponentials. Annales de l'Institut Fourier, Tome 67 (2017) no. 5, pp. 1865-1903. doi : 10.5802/aif.3124. https://aif.centre-mersenne.org/articles/10.5802/aif.3124/
[1] On -Laplace transforms, Proc. Natl. Acad. Sci. India, Sect. A, Volume 29 (1960), pp. 389-408 | Zbl
[2] On certain -difference equations and -Laplace transform, Proc. Natl. Acad. Sci. India, Sect. A, Volume 28 (1962), pp. 1-15 | Zbl
[3] On -summation and confluence, Ann. Inst. Fourier, Volume 59 (2009) no. 1, pp. 347-392 | DOI | Zbl
[4] Building meromorphic solutions of -difference equations using a Borel-Laplace summation, Int. Math. Res. Not., Volume 2015 (2015) no. 15, pp. 6562-6587 | DOI | Zbl
[5] Basic hypergeometric series, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, 2004, xxvi+428 pages | Zbl
[6] Beitrage zur Theorie der Heineschen Reihen, Math. Nachr., Volume 2 (1949), pp. 340-379 | DOI | Zbl
[7] On -definite integrals, Quart. J., Volume 41 (1910), pp. 193-203 | Zbl
[8] Quantum calculus, Universitext, Springer, 2002, ix+112 pages | Zbl
[9] On -Gevrey asymptotics for singularly perturbed -difference-differential problems with an irregular singularity, Abstr. Appl. Anal., Volume 2012 (2012) (Art. ID 860716, 35 p.) | DOI | Zbl
[10] On -asymptotics for linear -difference-differential equations with Fuchsian and irregular singularities, J. Differ. Equations, Volume 252 (2012) no. 10, pp. 5185-5216 | DOI | Zbl
[11] On singularly perturbed -difference-differential equations with irregular singularity, J. Dyn. Control Syst., Volume 17 (2011) no. 2, pp. 243-271 | DOI | Zbl
[12] Multisommabilité des séries entières solutions formelles d’une équation aux -différences linéaire analytique, Ann. Inst. Fourier, Volume 50 (2000) no. 6, pp. 1859-1890 | DOI | Zbl
[13] Asymptotic expansions for -gamma, -exponential, and -Bessel functions, J. Math. Anal. Appl., Volume 186 (1994) no. 3, pp. 896-913 | DOI | Zbl
[14] Asymptotics and special functions, Academic Press, 1974, xii+297 pages | Zbl
[15] About the growth of the entire functions solutions of linear algebraic -difference equations, Ann. Fac. Sci. Toulouse, Volume 1 (1992) no. 1, pp. 53-94 | DOI | Zbl
[16] Séries divergentes et théories asymptotiques, Panoramas et Synthèses, 121, Société Mathématique de France, 1993, 74 pages | Zbl
[17] Développement asymptotique q-Gevrey et fonction thêta de Jacobi, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 11, pp. 899-902 | DOI | Zbl
[18] -Analogue of summability of formal solutions of some linear -difference-differential equations, Opusc. Math., Volume 35 (2015) no. 5, pp. 713-738 | DOI | Zbl
[19] Développements asymptotiques -Gevrey et séries -sommables, Ann. Inst. Fourier, Volume 49 (1999) no. 1, pp. 227-261 | DOI | Zbl
[20] Transformations de -Borel-Laplace au moyen de la fonction thêta de Jacobi, C. R. Acad. Sci. Paris, Volume 331 (2000), pp. 31-34 | DOI | Zbl
[21] Une sommation discrète pour des équations aux -différences linéaires et à coefficients analytiques: théorie générale et exemples, Differential equations and the Stokes phenomenon, Groningen (2001) (2002), pp. 309-329 | Zbl
Cité par Sources :