We show that, over every number field, the degree four del Pezzo surfaces that violate the Hasse principle are Zariski dense in the moduli scheme.
Nous montrons que, sur chaque corps de nombres, les surfaces de del Pezzo de degré quatre qui violent le principe de Hasse sont denses pour la topologie de Zariski dans le schéma de modules.
Revised:
Accepted:
Published online:
Keywords: Del Pezzo surface, Hasse principle, moduli scheme
Mot clés : Surface de del Pezzo, principe de Hasse, schéma de modules
Jahnel, Jörg 1; Schindler, Damaris 2
@article{AIF_2017__67_4_1783_0, author = {Jahnel, J\"org and Schindler, Damaris}, title = {Del {Pezzo} surfaces of degree four violating the {Hasse} principle are {Zariski} dense in the moduli scheme}, journal = {Annales de l'Institut Fourier}, pages = {1783--1807}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {4}, year = {2017}, doi = {10.5802/aif.3122}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3122/} }
TY - JOUR AU - Jahnel, Jörg AU - Schindler, Damaris TI - Del Pezzo surfaces of degree four violating the Hasse principle are Zariski dense in the moduli scheme JO - Annales de l'Institut Fourier PY - 2017 SP - 1783 EP - 1807 VL - 67 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3122/ DO - 10.5802/aif.3122 LA - en ID - AIF_2017__67_4_1783_0 ER -
%0 Journal Article %A Jahnel, Jörg %A Schindler, Damaris %T Del Pezzo surfaces of degree four violating the Hasse principle are Zariski dense in the moduli scheme %J Annales de l'Institut Fourier %D 2017 %P 1783-1807 %V 67 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3122/ %R 10.5802/aif.3122 %G en %F AIF_2017__67_4_1783_0
Jahnel, Jörg; Schindler, Damaris. Del Pezzo surfaces of degree four violating the Hasse principle are Zariski dense in the moduli scheme. Annales de l'Institut Fourier, Volume 67 (2017) no. 4, pp. 1783-1807. doi : 10.5802/aif.3122. https://aif.centre-mersenne.org/articles/10.5802/aif.3122/
[1] A computational solution to a question by Beauville on the invariants of the binary quintic, J. Algebra, Volume 303 (2006) no. 2, pp. 771-788 | DOI | Zbl
[2] The Brauer group of a commutative ring, Trans. Am. Math. Soc., Volume 97 (1960), pp. 367-409 | DOI | Zbl
[3] The Hasse problem for rational surfaces, J. Reine Angew. Math., Volume 274/275 (1975), pp. 164-174 | Zbl
[4] Number theory, Pure and Applied Mathematics, 20, Academic Press, 1966, x+435 pages (Translated from the Russian by Newcomb Greenleaf.) | Zbl
[5] The Brauer-Manin obstruction and Sh[2], LMS J. Comput. Math., Volume 10 (2007), pp. 354-377 | DOI | Zbl
[6] Arithmetic on singular Del Pezzo surfaces, Proc. Lond. Math. Soc., Volume 57 (1988) no. 1, pp. 25-87 | DOI | Zbl
[7] Surfaces de Del Pezzo, Lecture Notes in Mathematics, Springer, 1980, pp. 21-69 | Zbl
[8] Classical algebraic geometry. A modern view, Cambridge University Press, 2012, xii+639 pages | Zbl
[9] Cubic surfaces violating the Hasse principle are Zariski dense in the moduli scheme, Adv. Math., Volume 280 (2015), pp. 360-378 | DOI | Zbl
[10] Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses, Séminaire Bourbaki, Volume 9, Société Mathématique de France, 1995, pp. 199-219 (Exp. No. 290) | Zbl
[11] Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, Volume 6, Soc. Math. France, 1995, pp. 249-276 (Exp. No. 221) | Zbl
[12] On the moduli of degree 4 del Pezzo surfaces. (2013) (https://arxiv.org/abs/1312.6734)
[13] Sur la théorie des fonctions homogènes à deux indéterminées, Cambridge and Dublin Mathematical Journal, Volume 9 (1854), pp. 172-217
[14] Cubic forms: algebra, geometry, arithmetic, North-Holland Mathematical Library, 4, North-Holland; American Elsevier, 1974, vii+292 pages (Translated from the Russian by M. Hazewinkel) | Zbl
[15] Étale cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980, xiii+323 pages | Zbl
[16] Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 34, Springer, 1993, xiv+292 pages | Zbl
[17] Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer, 1999, xviii+571 pages (Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder) | Zbl
[18] The arithmetic of certain del Pezzo surfaces and K3 surfaces, J. Théor. Nombres Bordx., Volume 24 (2012) no. 2, pp. 447-460 | DOI | Zbl
[19] Associative algebras, Graduate Texts in Mathematics, 88, Springer, 1982, xii+436 pages (Studies in the History of Modern Science, 9) | Zbl
[20] The complete intersection of two or more quadrics, Cambridge, UK (1972) (Ph. D. Thesis)
[21] Lessons introductory to the modern higher algebra, 3rd edition, Hodges, Foster, and Co., Dublin, 1876
[22] Global class field theory, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Academic Press, 1967, pp. 162-203 | Zbl
[23] Failure of the Hasse principle for Enriques surfaces, Adv. Math., Volume 226 (2011) no. 6, pp. 4884-4901 | DOI | Zbl
[24] Arithmetic of del Pezzo surfaces of degree 4 and vertical Brauer groups, Adv. Math., Volume 255 (2014), pp. 153-181 | DOI | Zbl
[25] Abstract versus classical algebraic geometry, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III (1956), pp. 550-558 | Zbl
[26] Intersections de deux quadriques et pinceaux de courbes de genre 1, Lecture Notes in Mathematics, 1901, Springer, 2007, viii+218 pages | Zbl
Cited by Sources: