Soit un domaine borné. Soit , avec . Nous obtenons des conditions nécessaires et des conditions suffisantes correspondantes — dont seules les constantes impliquées diffèrent — pour l’éxistence de solutions très faibles au problème aux limites , sur et sur , et au problème non linéaire associé, avec une croissance quadratique par rapport au gradient, sur et sur . Nous parvenons aussi à des estimations ponctuelles précises des solutions jusqu’à la frontière.
Un rôle crucial est joué par une nouvelle “condition aux limites” portant sur , exprimée en terme d’intégrabilité exponentielle sur du balayage de la mesure , où . Cette condition est optimale, et elle apparaît dans un tel contexte pour la première fois. Elle est notamment remplie si est une mesure de Carleson dans , ou si son balayage, de norme suffisament petite, est dans . Cela résout un problème qui était resté en suspens jusqu’à présent.
Let , for , be a bounded domain. Let with . We give necessary conditions and matching sufficient conditions, which differ only in the constants involved, for the existence of very weak solutions to the boundary value problem , on , on , and the related nonlinear problem with quadratic growth in the gradient, on , on . We also obtain precise pointwise estimates of solutions up to the boundary.
A crucial role is played by a new “boundary condition” on which is expressed in terms of the exponential integrability on of the balayage of the measure , where . This condition is sharp, and appears in such a context for the first time. It holds, for example, if is a Carleson measure in , or if its balayage is in , with sufficiently small norm. This solves an open problem posed in the literature.
Révisé le :
Accepté le :
Publié le :
Keywords: Schrödinger equation, very weak solutions, balayage, Carleson measures, BMO
Mot clés : Equation de Schrödinger, solutions très faibles, balayage, mesure de Carleson, BMO
Frazier, Michael W. 1 ; Verbitsky, Igor E. 2
@article{AIF_2017__67_4_1393_0, author = {Frazier, Michael W. and Verbitsky, Igor E.}, title = {Positive {Solutions} to {Schr\"odinger{\textquoteright}s} {Equation} and the {Exponential} {Integrability} of the {Balayage}}, journal = {Annales de l'Institut Fourier}, pages = {1393--1425}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {4}, year = {2017}, doi = {10.5802/aif.3113}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3113/} }
TY - JOUR AU - Frazier, Michael W. AU - Verbitsky, Igor E. TI - Positive Solutions to Schrödinger’s Equation and the Exponential Integrability of the Balayage JO - Annales de l'Institut Fourier PY - 2017 SP - 1393 EP - 1425 VL - 67 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3113/ DO - 10.5802/aif.3113 LA - en ID - AIF_2017__67_4_1393_0 ER -
%0 Journal Article %A Frazier, Michael W. %A Verbitsky, Igor E. %T Positive Solutions to Schrödinger’s Equation and the Exponential Integrability of the Balayage %J Annales de l'Institut Fourier %D 2017 %P 1393-1425 %V 67 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3113/ %R 10.5802/aif.3113 %G en %F AIF_2017__67_4_1393_0
Frazier, Michael W.; Verbitsky, Igor E. Positive Solutions to Schrödinger’s Equation and the Exponential Integrability of the Balayage. Annales de l'Institut Fourier, Tome 67 (2017) no. 4, pp. 1393-1425. doi : 10.5802/aif.3113. https://aif.centre-mersenne.org/articles/10.5802/aif.3113/
[1] Some remarks on elliptic problems with critical growth in the gradient, J. Differ. Equations, Volume 222 (2006) no. 1, pp. 21-62 | DOI | MR
[2] Corrigendum to ‘Some remarks on elliptic problems with critical growth in the gradient’, J. Differ. Equations, Volume 246 (2009) no. 7, pp. 2988-2990 | DOI | MR
[3] Function spaces and potential theory, Grundlehren der Mathematischen Wissenschaften, 314, Springer, 1996, xii+366 pages | DOI | MR
[4] First eigenvalues and comparison of Green’s functions for elliptic operators on manifolds or domains, J. Anal. Math., Volume 72 (1997), pp. 45-92 | DOI | MR
[5] Classical potential theory, Springer Monographs in Mathematics, Springer, 2001, xvi+333 pages | DOI | MR
[6] Blow up for revisited, Adv. Differ. Equ., Volume 1 (1996) no. 1, pp. 73-90 | MR
[7] From Brownian motion to Schrödinger’s equation, Grundlehren der Mathematischen Wissenschaften, 312, Springer, 1995, xii+287 pages | DOI | MR
[8] Comparison results for PDEs with a singular potential, Proc. R. Soc. Edinb., Sect. A, Volume 133 (2003) no. 1, pp. 61-83 | DOI | MR
[9] Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, Équations aux dérivées partielles et applications, Gauthier-Villars, 1998, pp. 497-515 | MR
[10] Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal., Volume 42 (2000) no. 7, pp. 1309-1326 | DOI | MR
[11] Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces, J. Differ. Equations, Volume 256 (2014) no. 2, pp. 577-608 | DOI | MR
[12] Global estimates for kernels of Neumann series and Green’s functions, J. Lond. Math. Soc., Volume 90 (2014) no. 3, pp. 903-918 | DOI | MR
[13] Global Green’s function estimates, Around the research of Vladimir Mazʼya. III (International Mathematical Series (New York)), Volume 13, Springer, 2010, pp. 105-152 | DOI | MR
[14] Bounded analytic functions, Graduate Texts in Mathematics, 236, Springer, 2007, xiv+459 pages | MR
[15] Pointwise estimates of solutions to semilinear elliptic equations and inequalities (https://arxiv.org/abs/1511.03188, to appear in J. Anal. Math.)
[16] On the connection between two quasilinear elliptic problems with source terms of order 0 or 1, Commun. Contemp. Math., Volume 12 (2010) no. 5, pp. 727-788 | DOI | MR
[17] Global comparison of perturbed Green functions, Math. Ann., Volume 334 (2006) no. 3, pp. 643-678 | DOI | MR
[18] On the Picard principle for , Math. Z., Volume 270 (2012) no. 3-4, pp. 783-807 | DOI | MR
[19] Criteria of solvability for multidimensional Riccati equations, Ark. Mat., Volume 37 (1999) no. 1, pp. 87-120 | DOI | MR
[20] Nonlinear potential theory of degenerate elliptic equations, Dover Publications, Inc., Mineola, NY, 2006, xii+404 pages (Unabridged republication of the 1993 original) | MR
[21] Existence and regularity of positive solutions of elliptic equations of Schrödinger type, J. Anal. Math., Volume 118 (2012) no. 2, pp. 577-621 | DOI | MR
[22] Foundations of modern potential theory, Springer, 1972, x+424 pages (Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180) | MR
[23] Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, 51, American Mathematical Society, 1997, xiv+291 pages | DOI | MR
[24] Nonlinear second order elliptic equations involving measures, De Gruyter Series in Nonlinear Analysis and Applications, 21, De Gruyter, Berlin, 2014, xiii+248 pages | MR
[25] Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften, 342, Springer, 2011, xxviii+866 pages | DOI | MR
[26] Structure of positive solutions to in , Duke Math. J., Volume 53 (1986) no. 4, pp. 869-943 | DOI | MR
[27] Maximum and anti-maximum principles and eigenfunctions estimates via perturbation theory of positive solutions of elliptic equations, Math. Ann., Volume 314 (1999) no. 3, pp. 555-590 | DOI | MR
[28] Carleson measure and balayage, Int. Math. Res. Not. (2010) no. 13, pp. 2427-2436 | DOI | MR
[29] Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand., Volume 21 (1967), p. 17-37 (1968) | DOI | MR
[30] Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl., Volume 116 (1986) no. 2, pp. 309-334 | DOI | MR
Cité par Sources :