Nous présentons une construction de la hiérarchie de l’équation de Camassa–Holm à deux composantes (CH-2) en utilisant un nouveau formalisme de courbure nulle. Nous décrivons en détail et identifions l’ensemble isospectral associé à toutes les solutions algébro-géométriques à valeur réelle, réguliéres et bornées de la -ème équation de l’équation stationnaire de la hiérarchie CH-2 au tore de dimension . Nous utilisons des équations de type Dubrovin pour les diviseurs auxiliaires et certains aspects de la théorie spectrale et d’inversion spectrale pour les systèmes Hamiltoniens singuliers auto-adjoints. En particulier, nous utilisons la théorie de Weyl–Titchmarsh pour les systèmes (canoniques) Hamiltoniens singuliers.
Bien que nous nous concentrons principalement sur le cas des solutions algébro-géométriques stationnaires pour CH-2, nous remarquons que le cas de la solution évolutive qui dépend du temps est subordonné au cas stationnaire en ce qui concernent les questions isospectrales liées au tore.
We provide a construction of the two-component Camassa–Holm (CH-2) hierarchy employing a new zero-curvature formalism and identify and describe in detail the isospectral set associated to all real-valued, smooth, and bounded algebro-geometric solutions of the th equation of the stationary CH-2 hierarchy as the real -dimensional torus . We employ Dubrovin-type equations for auxiliary divisors and certain aspects of direct and inverse spectral theory for self-adjoint singular Hamiltonian systems. In particular, we employ Weyl–Titchmarsh theory for singular (canonical) Hamiltonian systems.
While we focus primarily on the case of stationary algebro-geometric CH-2 solutions, we note that the time-dependent case subordinates to the stationary one with respect to isospectral torus questions.
Accepté le :
Publié le :
Keywords: Two-component Camassa–Holm hierarchy, real-valued algebro-geometric solutions, isospectral tori, self-adjoint Hamiltonian systems, Weyl–Titchmarsh theory
Mot clés : Hiérarchie de Camassa–Holm à deux composantes, solutions algebro-géométriques à valeurs réelles, théorie isospectrale, systèmes hamiltoniens auto-adjoints, théorie de Weyl–Titchmarsh
Eckhardt, Jonathan 1 ; Gesztesy, Fritz 2 ; Holden, Helge 3 ; Kostenko, Aleksey 1 ; Teschl, Gerald 1, 4
@article{AIF_2017__67_3_1185_0, author = {Eckhardt, Jonathan and Gesztesy, Fritz and Holden, Helge and Kostenko, Aleksey and Teschl, Gerald}, title = {Real-Valued {Algebro-Geometric} {Solutions} of the {Two-Component} {Camassa{\textendash}Holm} {Hierarchy}}, journal = {Annales de l'Institut Fourier}, pages = {1185--1230}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {3}, year = {2017}, doi = {10.5802/aif.3107}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3107/} }
TY - JOUR AU - Eckhardt, Jonathan AU - Gesztesy, Fritz AU - Holden, Helge AU - Kostenko, Aleksey AU - Teschl, Gerald TI - Real-Valued Algebro-Geometric Solutions of the Two-Component Camassa–Holm Hierarchy JO - Annales de l'Institut Fourier PY - 2017 SP - 1185 EP - 1230 VL - 67 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3107/ DO - 10.5802/aif.3107 LA - en ID - AIF_2017__67_3_1185_0 ER -
%0 Journal Article %A Eckhardt, Jonathan %A Gesztesy, Fritz %A Holden, Helge %A Kostenko, Aleksey %A Teschl, Gerald %T Real-Valued Algebro-Geometric Solutions of the Two-Component Camassa–Holm Hierarchy %J Annales de l'Institut Fourier %D 2017 %P 1185-1230 %V 67 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3107/ %R 10.5802/aif.3107 %G en %F AIF_2017__67_3_1185_0
Eckhardt, Jonathan; Gesztesy, Fritz; Holden, Helge; Kostenko, Aleksey; Teschl, Gerald. Real-Valued Algebro-Geometric Solutions of the Two-Component Camassa–Holm Hierarchy. Annales de l'Institut Fourier, Tome 67 (2017) no. 3, pp. 1185-1230. doi : 10.5802/aif.3107. https://aif.centre-mersenne.org/articles/10.5802/aif.3107/
[1] The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE’s of shallow water and Dym type, Comm. Math. Phys., Volume 221 (2001) no. 1, pp. 197-227 | DOI
[2] Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians, Inverse Problems, Volume 17 (2001) no. 4, pp. 1017-1042 Special issue to celebrate Pierre Sabatier’s 65th birthday (Montpellier, 2000) | DOI
[3] On a negative flow of the AKNS hierarchy and its relation to a two-component Camassa–Holm equation, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 2 (2006), Paper 070, 12 pages | DOI
[4] Discrete and Continuous Boundary Problems, Mathematics in Science and Engineering, 8, Academic Press, New York-London, 1964, xiv+570 pages
[5] An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., Volume 71 (1993) no. 11, pp. 1661-1664 | DOI
[6] Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa–Holm system, Discrete Contin. Dyn. Syst., Volume 32 (2012) no. 10, pp. 3459-3484 | DOI
[7] On well-posedness of two-component Camassa–Holm system in the critical Besov space, Nonlinear Anal., Volume 120 (2015), pp. 285-298 | DOI
[8] A two-component generalization of the Camassa–Holm equation and its solutions, Lett. Math. Phys., Volume 75 (2006) no. 1, pp. 1-15 | DOI
[9] Weyl-Titchmarsh -function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators, Trans. Amer. Math. Soc., Volume 354 (2002) no. 9, p. 3475-3534 (electronic) | DOI
[10] On an integrable two-component Camassa–Holm shallow water system, Phys. Lett. A, Volume 372 (2008) no. 48, pp. 7129-7132 | DOI
[11] A shallow water equation on the circle, Comm. Pure Appl. Math., Volume 52 (1999) no. 8, pp. 949-982 | DOI
[12] The inverse spectral transform for the conservative Camassa–Holm flow with decaying initial data (https://arxiv.org/abs/1510.04916, to appear in Arch. Rat. Mech. Anal.)
[13] An isospectral problem for global conservative multi-peakon solutions of the Camassa–Holm equation, Commun. Math. Phys., Volume 329 (2014) no. 3, pp. 893-918 | DOI
[14] Quadratic operator pencils associated with the conservative Camassa–Holm flow (2014) (https://arxiv.org/abs/1406.3703, to appear in Bull. Soc. Math. Fr.)
[15] The inverse spectral problem for indefinite strings, Invent. Math., Volume 204 (2016) no. 3, pp. 939-977 | DOI
[16] The geometry of the two-component Camassa–Holm and Degasperis-Procesi equations, J. Geom. Phys., Volume 61 (2011) no. 2, pp. 436-452 | DOI
[17] Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation, Discrete Contin. Dyn. Syst., Volume 19 (2007) no. 3, pp. 493-513 | DOI
[18] On a Camassa–Holm type equation with two dependent variables, J. Phys. A, Math. Theor., Volume 39 (2006) no. 2, pp. 327-342 | DOI
[19] Well posedness and blow-up solution for a new coupled Camassa–Holm equations with peakons, J. Math. Phys., Volume 50 (2009) no. 1, 012906, 25 pages | DOI
[20] Algebro-geometric solutions of the Camassa–Holm hierarchy, Rev. Mat. Iberoam., Volume 19 (2003) no. 1, pp. 73-142 | DOI
[21] Soliton Equations and Their Algebro-Geometric Solutions. Vol. I, Cambridge Studies in Advanced Mathematics, 79, Cambridge University Press, Cambridge, 2003, xii+505 pages -dimensional continuous models | DOI
[22] Real-valued algebro-geometric solutions of the Camassa–Holm hierarchy, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 366 (2008) no. 1867, pp. 1025-1054 | DOI
[23] On matrix-valued Herglotz functions, Math. Nachr., Volume 218 (2000), pp. 61-138 | DOI
[24] Global solutions for the two-component Camassa–Holm system, Comm. Partial Differential Equations, Volume 37 (2012) no. 12, pp. 2245-2271 | DOI
[25] Periodic conservative solutions for the two-component Camassa–Holm system, Spectral analysis, differential equations and mathematical physics: a festschrift in honor of Fritz Gesztesy’s 60th birthday (Proc. Sympos. Pure Math.), Volume 87, Amer. Math. Soc., Providence, RI, 2013, pp. 165-182 | DOI
[26] Global dissipative solutions of the two-component Camassa–Holm system for initial data with nonvanishing asymptotics, Nonlinear Anal., Real World Appl., Volume 17 (2014), pp. 203-244 | DOI
[27] A continuous interpolation between conservative and dissipative solutions for the two-component Camassa–Holm system, Forum Math. Sigma, Volume 3 (2015) (Art. ID e1, 73 p.) | DOI
[28] Global existence and blow-up phenomena for an integrable two-component Camassa–Holm shallow water system, J. Differ. Equations, Volume 248 (2010) no. 8, pp. 2003-2014 | DOI
[29] Global weak solutions for a two-component Camassa–Holm shallow water system, J. Funct. Anal., Volume 260 (2011) no. 4, pp. 1132-1154 | DOI
[30] On Titchmarsh–Weyl -functions for linear Hamiltonian systems, J. Differ. Equations, Volume 40 (1981) no. 3, pp. 316-342 | DOI
[31] Hamiltonian systems of limit point or limit circle type with both endpoints singular, J. Differ. Equations, Volume 50 (1983) no. 3, pp. 444-464 | DOI
[32] On boundary value problems for Hamiltonian systems with two singular points, SIAM J. Math. Anal., Volume 15 (1984) no. 2, pp. 272-286 | DOI
[33] Multi-component generalizations of the CH equation: geometrical aspects, peakons and numerical examples, J. Phys. A, Math. Theor., Volume 43 (2010) no. 49, 492001, 20 pages | DOI
[34] Two-component CH system: inverse scattering, peakons and geometry, Inverse Problems, Volume 27 (2011) no. 4, 045013, 19 pages | DOI
[35] Algebro-geometric solutions for the two-component Camassa–Holm hierarchy (https://arxiv.org/abs/1406.6153)
[36] Well-posedness and blow-up phenomena for a periodic two-component Camassa–Holm equation, Proc. Roy. Soc. Edinburgh Sect. A, Volume 141 (2011) no. 1, pp. 93-107 | DOI
[37] Variational derivation of two-component Camassa–Holm shallow water system, Appl. Anal., Volume 92 (2013) no. 6, pp. 1241-1253 | DOI
[38] Extended Camassa–Holm hierarchy and conserved quantities, Z. Nat.forsch., A: Phys. Sci., Volume 61 (2006) no. 3-4, pp. 133-138
[39] On square-integrable solutions of symmetric systems of differential equations of arbitrary order, Proc. R. Soc. Edinb., Sect. A, Volume 74 (1974/75), p. 5-40 (1976) | DOI
[40] On a two-component -Camassa–Holm system, J. Geom. Phys., Volume 62 (2012) no. 4, pp. 832-838 | DOI
[41] The two-component Camassa–Holm system in weighted spaces, ZAMM, Z. Angew. Math. Mech., Volume 94 (2014) no. 3, pp. 264-272 | DOI
[42] Curvature computations for a two-component Camassa–Holm equation with vorticity (2015) (https://arxiv.org/abs/1509.00694, to appear in Appl. Anal.)
[43] On the deficiency indices and self-adjointness of symmetric Hamiltonian systems, J. Differ. Equations, Volume 189 (2003) no. 2, pp. 556-615 | DOI
[44] Inverse Sturm–Liouville Problems, VSP, Zeist, 1987, x+240 pages (Translated from the Russian by O. Efimov)
[45] Stability of the train of solitary waves for the two-component Camassa–Holm shallow water system, J. Differ. Equations, Volume 260 (2016) no. 12, pp. 8403-8427 | DOI
[46] On blow-up of solutions to the two-component -Camassa–Holm system, J. Math. Anal. Appl., Volume 426 (2015) no. 2, pp. 1026-1039 | DOI
[47] A note on traveling wave solutions to the two component Camassa–Holm equation, J. Nonlinear Math. Phys., Volume 16 (2009) no. 2, pp. 117-125 | DOI
[48] Global solutions to a special case of the generalized weakly dissipative periodic two-component Camassa–Holm system, Nonlinear Anal., Volume 117 (2015), pp. 38-46 | DOI
[49] On smooth traveling waves of an integrable two-component Camassa–Holm shallow water system, Wave Motion, Volume 46 (2009) no. 6, pp. 397-402 | DOI
[50] Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, Volume 53 (1996) no. 2, pp. 1900-1906 | DOI
[51] The periodic Cauchy problem for the 2-component Camassa–Holm system, Differ. Integral Equ., Volume 26 (2013) no. 1-2, pp. 155-182
[52] Several new types of bounded wave solutions for the generalized two-component Camassa–Holm equation, Nonlinear Dynam., Volume 77 (2014) no. 3, pp. 849-857 | DOI
[53] A synthetical two-component model with peakon solutions, Stud. Appl. Math., Volume 135 (2015) no. 3, pp. 248-276 | DOI
[54] Qualitative analysis for a new integrable two-component Camassa–Holm system with peakon and weak kink solutions, Comm. Math. Phys., Volume 336 (2015) no. 2, pp. 581-617 | DOI
Cité par Sources :