On the regularity problem of complex Monge–Ampere equations with conical singularities
Annales de l'Institut Fourier, Volume 67 (2017) no. 3, pp. 969-1003.

In the category of metrics with conical singularities along a smooth divisor with angle in (0,2π), we show that locally defined weak solutions (C 1,1 -solutions) to the Kähler–Einstein equations actually possess maximum regularity, which means the metrics are actually Hölder continuous in the singular polar coordinates. This shows the weak Kähler–Einstein metrics constructed by Guenancia–Păun, and independently by Yao, are all actually strong-conical Kähler–Einstein metrics. The key step is to establish a Liouville-type theorem for weak-conical Kähler–Ricci flat metrics defined over n , which depends on a Calderon–Zygmund theory in the conical setting. The regularity of globally defined weak-conical Kähler–Einstein metrics is already proved by Guenancia–Paun using a different method.

Dans la catégorie des métriques à singularités coniques autour d’un diviseur lisse avec angle strictement compris entre 0 et 2π, on montre que les solutions faibles localement définies (au sens C (1,1) ) des équations de Kähler–Einstein sont de régularité maximale, ce qui implique que les métriques sont Höldériennes dans les coordonnées polaires singulières. Ceci montre que les métriques de Kähler–Einstein faibles construites par Guénancia-Păun, et Yao indépendamment, sont en fait des métriques de Kähler–Einstein coniques au sens fort. Le point clé est d’établir un théorème de type Liouville pour les métriques Ricci-plates au sens faible sur n , ce qui découle d’une théorie de Calderon–Zygmund dans un contexte conique. La régularité des métriques de Kähler–Einstein coniques globalement définies avait déjà été obtenue par Guénancia-Păun par une autre méthode.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3102
Classification: 35J75
Keywords: complex Monge–Ampère equations, conical singularity
Mot clés : équations complexes de Monge–Ampère, singularité conique

Chen, Xiuxiong 1; Wang, Yuanqi 2

1 Department of Mathematics Stony Brook University Stony Brook, NY 11794 (USA)
2 Department of Mathematics University of California at Santa Barbara Santa Barbara, CA 93106 (USA)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2017__67_3_969_0,
     author = {Chen, Xiuxiong and Wang, Yuanqi},
     title = {On the regularity problem of complex {Monge{\textendash}Ampere} equations with conical singularities},
     journal = {Annales de l'Institut Fourier},
     pages = {969--1003},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {3},
     year = {2017},
     doi = {10.5802/aif.3102},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3102/}
}
TY  - JOUR
AU  - Chen, Xiuxiong
AU  - Wang, Yuanqi
TI  - On the regularity problem of complex Monge–Ampere equations with conical singularities
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 969
EP  - 1003
VL  - 67
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3102/
DO  - 10.5802/aif.3102
LA  - en
ID  - AIF_2017__67_3_969_0
ER  - 
%0 Journal Article
%A Chen, Xiuxiong
%A Wang, Yuanqi
%T On the regularity problem of complex Monge–Ampere equations with conical singularities
%J Annales de l'Institut Fourier
%D 2017
%P 969-1003
%V 67
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3102/
%R 10.5802/aif.3102
%G en
%F AIF_2017__67_3_969_0
Chen, Xiuxiong; Wang, Yuanqi. On the regularity problem of complex Monge–Ampere equations with conical singularities. Annales de l'Institut Fourier, Volume 67 (2017) no. 3, pp. 969-1003. doi : 10.5802/aif.3102. https://aif.centre-mersenne.org/articles/10.5802/aif.3102/

[1] Berman, Robert J. A thermodynamic formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics, Adv. Math., Volume 248 (2013), pp. 1254-1297 | DOI

[2] Brendle, Simon Ricci flat Kähler metrics with edge singularities, Int. Math. Res. Not., Volume 2013 (2013) no. 24, pp. 5727-5766

[3] Calderón, Alberto P.; Zygmund, Antoni On the existence of certain singular integrals, Acta Math., Volume 88 (1952), pp. 85-139 | DOI

[4] Campana, Frédéric; Guenancia, Henri; Păun, Mihai Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields, Ann. Sci. Éc. Norm. Supér., Volume 46 (2013) no. 6, pp. 879-916 | DOI

[5] Chen, Xiuxiong; Donaldson, Simon; Sun, Song Kähler-Einstein metric on Fano manifolds, I: approximation of metrics with cone singularities, J. Amer. Math. Soc., Volume 28 (2015), pp. 183-197 | DOI

[6] Chen, Xiuxiong; Donaldson, Simon; Sun, Song Kähler-Einstein metric on Fano manifolds, II: limits with cone angle less than 2π, J. Amer. Math. Soc., Volume 28 (2015), pp. 199-234 | DOI

[7] Chen, Xiuxiong; Donaldson, Simon; Sun, Song Kähler-Einstein metric on Fano manifolds, III: limits with cone angle approaches 2π and completion of the main proof, J. Amer. Math. Soc., Volume 28 (2015), pp. 235-278 | DOI

[8] Chen, Xiuxiong; Wang, Yuanqi On the long time behaviour of the Conical Kähler-Ricci flows (https://arxiv.org/abs/1402.6689, to appear in J. Reine. Angew. Math.)

[9] Chen, Xiuxiong; Wang, Yuanqi Bessel functions, heat kernel and the Conical Kähler-Ricci flow, J. Funct. Anal., Volume 269 (2015) no. 2, p. 551-362 | DOI

[10] Donaldson, Simon Kähler metrics with cone singularities along a divisor, Essays in mathematics and its applications, Springer, 2012, pp. 49-79

[11] Evans, Lawrence C. Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998, xvii+662 pages

[12] Gilbarg, David; Trudinger, Neil S. Elliptic Partial Differential Equations of Second Order, Grundlehren der mathematischen Wissenschaften., 224, Springer-Verlag, 1977, x+401 pages

[13] Griffiths, Phillip; Harris, Joseph Principles of Algebraic Geometry, Wiley Classics Library, John Wiley & Sons Ltd., 1994, xii+813 pages

[14] Guenanci, Henri; Păun, Mihai Conic singularities metrics with perscribed Ricci curvature: the case of general cone angles along normal crossing divisors, J. Differ. Geom., Volume 103 (2016) no. 1, pp. 15-57 | DOI

[15] Hörmander, Lars L 2 -estimates and existence theorems for the ¯-operators, Acta Math., Volume 113 (1965), pp. 89-152 | DOI

[16] Hörmander, Lars An introduction to complex analysis in several variables, North-Holland Mathematical Library, 7, North-Holland, 1990, xii+254 pages

[17] Jeffres, T; Mazzeo, Rafe; Rubinstein, Yanir A. Kähler-Einstein metrics with edge singularities (https://arxiv.org/abs/1105.5216, to appear in Ann. Math.)

[18] Li, Chi; Sun, Song Conical Kähler-Einstein metrics revisited, Commun. Math. Phys., Volume 331 (2014) no. 3, pp. 927-973 | DOI

[19] Liu, Jiawei; Zhang, Xi The conical Kähler-Ricci flow on Fano manifolds (https://arxiv.org/abs/1402.1832)

[20] Song, Jian; Wang, Xiaowei The greatest Ricci lower bound, conical Einstein metrics and the Chern number inequality, Geom. Topol., Volume 20 (2016) no. 1, pp. 49-102 | DOI

[21] Stein, Elias M. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970, xiv+287 pages

[22] Wang, Yuanqi Notes on the L 2 -estimates and regularity of parabolic equations over conical manifolds (unpublished work)

[23] Wang, Yuanqi Smooth approximations of the Conical Kähler-Ricci flows, Math. Ann., Volume 365 (2016) no. 1-2, pp. 835-856 | DOI

[24] Yao, Chengjian Existence of Weak Conical Kähler-Einstein Metrics Along Smooth Hypersurfaces, Math. Ann., Volume 362 (2015) no. 3-4, pp. 1287-1304 | DOI

Cited by Sources: