Quasicircle boundaries and exotic almost-isometries
[Quasi-cercles au bord et presque-isométries éxotiques]
Annales de l'Institut Fourier, Tome 67 (2017) no. 2, pp. 863-877.

Nous démontrons que l’ensemble limite d’une action isométrique et convexe co-compacte d’un groupe de surface sur un espace hyperbolique, équipé de sa métrique visuelle canonique, est un (faible) quasi-cercle au sens de Falconer et Marsh. Ceci implique que ces métriques visuelles sur ces ensembles limites sont classifiées, à équivalence bi-Lipschitz près, par leur dimension de Hausdorff. Nous donnons plusiers consequences, y compris l’existence de presque-isométries entre des paires de métriques périodiques sur 2 (malgré le faite qu’en général, il n’existe pas de presque-isométrie équivariante).

We show that the limit set of an isometric and convex cocompact action of a surface group on a proper geodesic hyperbolic metric space, when equipped with a visual metric, is a Falconer–Marsh (weak) quasicircle. As a consequence, the Hausdorff dimension of such a limit set determines its bi-Lipschitz class. We give applications, including the existence of almost-isometries between periodic negatively curved metrics on 2 that cannot be realized equivariantly.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3098
Classification : 20F67, 51F99
Keywords: Rigidity, quasi-isometry, almost-isometry, bi-Lipschitz map, boundary at infinity, quasi-circle, limit set, Hausdorff dimension.
Mot clés : Rigidité, quasi-isométrie, presque-isométrie, application bi-Lipschitz, bord à l’infini, quasi-cercle, ensemble limite, dimension de Hausdorff.

Lafont, Jean-François 1 ; Schmidt, Benjamin 2 ; van Limbeek, Wouter 3

1 Department of Mathematics Ohio State University Columbus, Ohio 43210 (USA)
2 Department of Mathematics Michigan State University East Lansing, MI 48824 (USA)
3 Department of Mathematics University of Michigan Ann Arbor, MI 48109 (USA)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2017__67_2_863_0,
     author = {Lafont, Jean-Fran\c{c}ois and Schmidt, Benjamin and van Limbeek, Wouter},
     title = {Quasicircle boundaries and exotic almost-isometries},
     journal = {Annales de l'Institut Fourier},
     pages = {863--877},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {67},
     number = {2},
     year = {2017},
     doi = {10.5802/aif.3098},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3098/}
}
TY  - JOUR
AU  - Lafont, Jean-François
AU  - Schmidt, Benjamin
AU  - van Limbeek, Wouter
TI  - Quasicircle boundaries and exotic almost-isometries
JO  - Annales de l'Institut Fourier
PY  - 2017
SP  - 863
EP  - 877
VL  - 67
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3098/
DO  - 10.5802/aif.3098
LA  - en
ID  - AIF_2017__67_2_863_0
ER  - 
%0 Journal Article
%A Lafont, Jean-François
%A Schmidt, Benjamin
%A van Limbeek, Wouter
%T Quasicircle boundaries and exotic almost-isometries
%J Annales de l'Institut Fourier
%D 2017
%P 863-877
%V 67
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3098/
%R 10.5802/aif.3098
%G en
%F AIF_2017__67_2_863_0
Lafont, Jean-François; Schmidt, Benjamin; van Limbeek, Wouter. Quasicircle boundaries and exotic almost-isometries. Annales de l'Institut Fourier, Tome 67 (2017) no. 2, pp. 863-877. doi : 10.5802/aif.3098. https://aif.centre-mersenne.org/articles/10.5802/aif.3098/

[1] Bonk, Mario; Schramm, Oded Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal., Volume 10 (2000) no. 2, pp. 266-306 | DOI

[2] Bourdon, Marc Structure conforme au bord et flot géodésique d’un CAT(-1)-espace, Enseign. Math., Volume 41 (1995) no. 1-2, pp. 63-102

[3] Bourdon, Marc Sur le birapport au bord des CAT(-1)-espaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 83 (1996), pp. 95-104 | DOI

[4] Bourdon, Marc; Kleiner, Bruce Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn., Volume 7 (2013) no. 1, pp. 39-107 | DOI

[5] Bridson, Martin R.; Haefliger, André Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer-Verlag, 1999

[6] Cooper, Daryl; Pignataro, Thea On the shape of Cantor sets, J. Diff. Geom., Volume 28 (1988) no. 2, pp. 203-221 | DOI

[7] Coornaert, Michel Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov, Pac. J. Math, Volume 159 (1993) no. 2, pp. 241-270 | DOI

[8] Croke, Christopher B. Rigidity for surfaces of nonpositive curvature, Comment. Math. Helv., Volume 65 (1990) no. 1, pp. 150-169 | DOI

[9] Falconer, Kenneth J.; Marsh, D.T. Classification of quasi-circles by Hausdorff dimension, Nonlinearity, Volume 2 (1989) no. 3, pp. 489-493 | DOI

[10] Falconer, Kenneth J.; Marsh, D.T. On the Lipschitz equivalence of Cantor sets, Mathematika, Volume 39 (1992) no. 2, pp. 223-233 | DOI

[11] Gabai, David Convergence groups are Fuchsian groups, Ann. Math., Volume 136 (1992) no. 3, pp. 447-510 | DOI

[12] Kar, Aditi; Lafont, Jean-François; Schmidt, Benjamin Rigidity of almost-isometric universal covers, Indiana Univ. Math. J., Volume 65 (2016) no. 2, pp. 585-613 | DOI

[13] Katok, Anatole; Knieper, Gerhard; Pollicott, Mark; Weiss, Howard Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Invent. Math., Volume 98 (1989) no. 3, pp. 581-597 | DOI

[14] Katok, Anatole; Knieper, Gerhard; Weiss, Howard Formulas for the derivative and critical points of topological entropy for Anosov and geodesic flows, Commun. Math. Phys, Volume 138 (1991) no. 1, pp. 19-31 | DOI

[15] Lafont, Jean-François; Schmidt, Benjamin; van Limbeek, Wouter Quasicircle boundaries and exotic almost-isometries (https://arxiv.org/abs/1409.8607v1)

[16] Otal, Jean-Pierre Le spectre marqué des longueurs des surfaces à courbure négative, Ann. Math., Volume 131 (1990) no. 1, pp. 151-162 | DOI

[17] Otal, Jean-Pierre; Peigné, Marc Principe variationnel et groupes Kleiniens, Duke Math. J., Volume 125 (2004) no. 1, pp. 15-44 | DOI

[18] Rohde, Steffen Quasicircles modulo bilipschitz maps, Rev. Mat. Iberoam., Volume 17 (2001) no. 3, pp. 643-659 | DOI

[19] Sullivan, Dennis The density at infinity of a discrete group of hyperbolic motions, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979), pp. 171-202 | DOI

Cité par Sources :