This paper proves sharp lower bounds on a resonance-counting function for obstacle scattering in even-dimensional Euclidean space without a need for trapping assumptions. Similar lower bounds are proved for some other compactly supported perturbations of on , for example, for the Laplacian for certain metric perturbations on . The proof uses a Poisson formula for resonances, complementary to one proved by Zworski in even dimensions.
L’objet de cette note est de montrer des bornes inférieures optimales pour la fonction de comptage des résonances, dans le cas d’obstacles sur l’espace euclidien en dimension paire ; on ne fait aucune hypothèse de capture du flot de billard extérieur à l’obstacle. Des minorations similaires sont prouvées pour d’autres types de perturbations à support compact sur . La preuve utilise une formule de Poisson pour les résonances, complémentaire d’une formule montrée par Zworski en dimension paire.
Revised:
Accepted:
Published online:
Keywords: scattering theory, resonance, obstacle, metric
Mot clés : théorie de la diffusion, résonance, obstacle, métrique
Christiansen, T. J. 1
@article{AIF_2017__67_2_579_0, author = {Christiansen, T. J.}, title = {A sharp lower bound for a resonance-counting function in even dimensions}, journal = {Annales de l'Institut Fourier}, pages = {579--604}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {2}, year = {2017}, doi = {10.5802/aif.3092}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3092/} }
TY - JOUR AU - Christiansen, T. J. TI - A sharp lower bound for a resonance-counting function in even dimensions JO - Annales de l'Institut Fourier PY - 2017 SP - 579 EP - 604 VL - 67 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3092/ DO - 10.5802/aif.3092 LA - en ID - AIF_2017__67_2_579_0 ER -
%0 Journal Article %A Christiansen, T. J. %T A sharp lower bound for a resonance-counting function in even dimensions %J Annales de l'Institut Fourier %D 2017 %P 579-604 %V 67 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3092/ %R 10.5802/aif.3092 %G en %F AIF_2017__67_2_579_0
Christiansen, T. J. A sharp lower bound for a resonance-counting function in even dimensions. Annales de l'Institut Fourier, Volume 67 (2017) no. 2, pp. 579-604. doi : 10.5802/aif.3092. https://aif.centre-mersenne.org/articles/10.5802/aif.3092/
[1] La relation de Poisson pour l’équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Comm. Partial Differential Equations, Volume 7 (1982) no. 8, pp. 905-958 | DOI
[2] Purely imaginary scattering frequencies for exterior domains, Duke Math. J., Volume 41 (1974), pp. 607-637 | DOI
[3] Resonances for manifolds hyperbolic near infinity: optimal lower bounds on order of growth, Int. Math. Res. Not. IMRN, Volume 2011 (2011) no. 19, pp. 4431-4470 | DOI
[4] Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math., Volume 124 (2002) no. 4, pp. 677-735 http://muse.jhu.edu/journals/american_journal_of_mathematics/v124/124.4burq.pdf | DOI
[5] Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II, Ann. Henri Poincaré, Volume 3 (2002) no. 4, pp. 673-691 | DOI
[6] Lower bounds for resonance counting functions for obstacle scattering in even dimensions (to appear in Amer. J. Math.)
[7] Some remarks on resonances in even-dimensional Euclidean scattering, Trans. Amer. Math. Soc., Volume 368 (2016) no. 2, pp. 1361-1385 | DOI
[8] Mathematical theory of scattering resonances (Book in preparation. http://math.mit.edu/~dyatlov/res/res.pdf)
[9] Spectral duality for planar billiards, Comm. Math. Phys., Volume 170 (1995) no. 2, pp. 283-313 http://projecteuclid.org/euclid.cmp/1104273122 | DOI
[10] Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969, xv+378 pages
[11] Riemann’s boundary problem with infinite index, Operator Theory: Advances and Applications, 67, Birkhäuser Verlag, Basel, 1994, xii+252 pages (Edited and with an introduction and an appendix by I. V. Ostrovskiĭ, Translated from the 1986 Russian original by Yu. I. Lyubarskiĭ) | DOI
[12] Scattering asymptotics for Riemann surfaces, Ann. of Math., Volume 145 (1997) no. 3, pp. 597-660 | DOI
[13] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218 | DOI
[14] The analysis of linear partial differential operators. IV, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 275, Springer-Verlag, Berlin, 1985, vii+352 pages (Fourier integral operators)
[15] The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256, Springer-Verlag, Berlin, 1990, xii+440 pages (Distribution theory and Fourier analysis) | DOI
[16] The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary, Funktsional. Anal. i Prilozhen., Volume 14 (1980) no. 2, pp. 25-34 | DOI
[17] Scattering resonances of convex obstacles for general boundary conditions, Comm. Math. Phys., Volume 335 (2015) no. 2, pp. 759-807 | DOI
[18] Decaying modes for the wave equation in the exterior of an obstacle., Comm. Pure Appl. Math., Volume 22 (1969), pp. 737-787 | DOI
[19] The time delay operator and a related trace formula, Topics in functional analysis (essays dedicated to M. G. Kreĭn on the occasion of his 70th birthday) (Adv. in Math. Suppl. Stud.), Volume 3, Academic Press, New York-London, 1978, pp. 197-215
[20] Analytical characterization and numerical approximation of interior eigenvalues for impenetrable scatterers from far fields, Inverse Problems, Volume 30 (2014) no. 4, 045006, 22 pages | DOI
[21] Distribution of zeros of entire functions, Translations of Mathematical Monographs, 5, American Mathematical Society, Providence, R.I., 1980, xii+523 pages (Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman)
[22] Scattering theory and the trace of the wave group, J. Funct. Anal., Volume 45 (1982) no. 1, pp. 29-40 | DOI
[23] Polynomial bound on the number of scattering poles, J. Funct. Anal., Volume 53 (1983) no. 3, pp. 287-303 | DOI
[24] Polynomial bound on the distribution of poles in scattering by an obstacle, Journées équations aux dérivées partielles (1984), pp. 1-8 http://eudml.org/doc/93108 | DOI
[25] The trace of the wave group, Microlocal analysis (Boulder, Colo., 1983) (Contemp. Math.), Volume 27, Amer. Math. Soc., Providence, RI, 1984, pp. 127-167 | DOI
[26] Weyl asymptotics for the phase in obstacle scattering, Comm. Partial Differential Equations, Volume 13 (1988) no. 11, pp. 1431-1439 | DOI
[27] Sojourn times of trapping rays and the behavior of the modified resolvent of the Laplacian, Ann. Inst. H. Poincaré Phys. Théor., Volume 62 (1995) no. 1, pp. 17-45
[28] Semi-classical estimates on the scattering determinant, Ann. Henri Poincaré, Volume 2 (2001) no. 4, pp. 675-711 | DOI
[29] On the contribution of degenerate periodic trajectories to the wave-trace, Comm. Math. Phys., Volume 196 (1998) no. 2, pp. 363-383 | DOI
[30] On the Weyl formula for obstacles, Partial differential equations and mathematical physics (Copenhagen, 1995; Lund, 1995) (Progr. Nonlinear Differential Equations Appl.), Volume 21, Birkhäuser Boston, Boston, MA, 1996, pp. 264-285 | DOI
[31] Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc., Volume 4 (1991) no. 4, pp. 729-769 | DOI
[32] Lower bounds on the number of scattering poles. II, J. Funct. Anal., Volume 123 (1994) no. 2, pp. 336-367 | DOI
[33] Asymptotic distribution of resonances for convex obstacles, Acta Math., Volume 183 (1999) no. 2, pp. 191-253 | DOI
[34] Quasimodes and resonances: sharp lower bounds, Duke Math. J., Volume 99 (1999) no. 1, pp. 75-92 | DOI
[35] Sharp upper bounds on the number of the scattering poles, J. Funct. Anal., Volume 231 (2006) no. 1, pp. 111-142 | DOI
[36] Existence of resonances for metric scattering in even dimensions, Lett. Math. Phys., Volume 52 (2000) no. 3, pp. 211-223 | DOI
[37] Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys., Volume 146 (1992) no. 1, pp. 205-216 http://projecteuclid.org/euclid.cmp/1104249981 | DOI
[38] Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J., Volume 74 (1994) no. 1, pp. 1-17 | DOI
[39] Sharp bounds on the number of scattering poles in the two-dimensional case, Math. Nachr., Volume 170 (1994), pp. 287-297 | DOI
[40] Sharp polynomial bounds on the number of scattering poles, Duke Math. J., Volume 59 (1989) no. 2, pp. 311-323 | DOI
[41] Sharp polynomial bounds on the number of scattering poles of radial potentials, J. Funct. Anal., Volume 82 (1989) no. 2, pp. 370-403 | DOI
[42] Poisson formulae for resonances, Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, École Polytech., Palaiseau, 1997 (Exp. No. XIII, 14 p.)
[43] Poisson formula for resonances in even dimensions, Asian J. Math., Volume 2 (1998) no. 3, pp. 609-617 | DOI
[44] A remark on: “Inverse resonance problem for -symmetric analytic obstacles in the plane” [in Geometric methods in inverse problems and PDE control, 289–321, Springer, New York, 2004] by S. Zelditch, Inverse Probl. Imaging, Volume 1 (2007) no. 1, pp. 225-227 | DOI
Cited by Sources: