We prove a global Li–Yau inequality for a general Markov semigroup under a curvature-dimension condition. This inequality is stronger than all classical Li–Yau type inequalities known to us. On a Riemannian manifold, it is equivalent to a new parabolic Harnack inequality, both in negative and positive curvature, giving new subsequent bounds on the heat kernel of the semigroup. Under positive curvature we moreover reach ultracontractive bounds by a direct and robust method.
Nous obtenons une inégalité de type Li–Yau pour un semi-groupe de Markov général, sous une condition de courbure-dimension. A notre connaissance, cette nouvelle inégalité renforce toutes les inégalités de ce type. Sur une variété riemannienne, elle est équivalente à une nouvelle inégalité de Harnack parabolique, en courbure positive ou négative, et induit des bornes pertinentes sur le noyau de la chaleur associé. En courbure positive, elle permet d’atteindre des bornes ultracontractives par une méthode directe et robuste.
Revised:
Accepted:
Published online:
Keywords: Li–Yau inequality, Harnack inequality, heat kernel bounds, Ricci curvature.
Mot clés : inégalité de Li–Yau, inégalité de Harnack, noyaux de la chaleurs, courbure de Ricci
Bakry, Dominique 1; Bolley, François 2; Gentil, Ivan 3
@article{AIF_2017__67_1_397_0, author = {Bakry, Dominique and Bolley, Fran\c{c}ois and Gentil, Ivan}, title = {The {Li{\textendash}Yau} inequality and applications under a curvature-dimension condition}, journal = {Annales de l'Institut Fourier}, pages = {397--421}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {67}, number = {1}, year = {2017}, doi = {10.5802/aif.3086}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3086/} }
TY - JOUR AU - Bakry, Dominique AU - Bolley, François AU - Gentil, Ivan TI - The Li–Yau inequality and applications under a curvature-dimension condition JO - Annales de l'Institut Fourier PY - 2017 SP - 397 EP - 421 VL - 67 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3086/ DO - 10.5802/aif.3086 LA - en ID - AIF_2017__67_1_397_0 ER -
%0 Journal Article %A Bakry, Dominique %A Bolley, François %A Gentil, Ivan %T The Li–Yau inequality and applications under a curvature-dimension condition %J Annales de l'Institut Fourier %D 2017 %P 397-421 %V 67 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3086/ %R 10.5802/aif.3086 %G en %F AIF_2017__67_1_397_0
Bakry, Dominique; Bolley, François; Gentil, Ivan. The Li–Yau inequality and applications under a curvature-dimension condition. Annales de l'Institut Fourier, Volume 67 (2017) no. 1, pp. 397-421. doi : 10.5802/aif.3086. https://aif.centre-mersenne.org/articles/10.5802/aif.3086/
[1] Analysis and geometry of Markov diffusion operators, Grund. Math. Wiss., 348, Springer, 2014
[2] A logarithmic Sobolev form of the Li–Yau parabolic inequality, Rev. Mat. Iberoam., Volume 22 (2006) no. 2, pp. 683-702
[3] Harnack inequalities on a manifold with positive or negative Ricci curvature, Rev. Mat. Iberoam., Volume 15 (1999) no. 1, pp. 143-179
[4] Perelman’s entropy and doubling property on Riemannian manifolds, J. Geom. Anal., Volume 21 (2011) no. 4, pp. 1119-1131
[5] Heat kernels and spectral theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1989, x+197 pages | DOI
[6] Li–Yau and Harnack type inequalities in metric measure spaces, Nonlinear Anal., Volume 95 (2014), pp. 721-734
[7] A matrix Harnack estimate for the heat equation, Comm. Anal. Geom., Volume 1 (1993) no. 1, pp. 88-99
[8] Generalized Li–Yau estimates and Huisken’s monotonicity formula (2016) (https://arxiv.org/abs/1211.5559, to appear in ESAIM Control Opt. Calc. Var)
[9] Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv. Math., Volume 226 (2011) no. 5, pp. 4456-4491
[10] On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986) no. 3-4, pp. 153-201
[11] A generalization of Hamilton’s gradient estimate, J. Geom. Phys., Volume 62 (2012) no. 5, pp. 1064-1069
[12] Remarks on differential Harnack inequalities, J. Math. Anal. Appl., Volume 409 (2014) no. 1, pp. 556-566
[13] Sharp spectral gap and Li–Yau’s estimate on Alexandrov spaces, Math. Z., Volume 273 (2013) no. 3-4, pp. 1175-1195
[14] Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc., Volume 38 (2006) no. 6, pp. 1045-1053
[15] Optimal transport, Old and new, Grund. Math. Wiss., 338, Springer, 2009, xxii+973 pages
[16] Gradient and Harnack inequalities on noncompact manifolds with boundary, Pacific J. Math., Volume 245 (2010) no. 1, pp. 185-200
[17] Harnack inequality for non-self-adjoint evolution equations, Math. Res. Lett., Volume 2 (1995) no. 4, pp. 387-399
Cited by Sources: