We study periodic orbits of the Reeb vector field on a nondegenerate dynamically convex starshaped hypersurface in along the lines of Long and Zhu [24], but using properties of the - equivariant symplectic homology. We prove that there exist at least distinct simple periodic orbits on any nondegenerate starshaped hypersurface in satisfying the condition that the minimal Conley–Zehnder index is at least . The condition is weaker than dynamical convexity.
Nous étudions les orbites périodiques du champ de Reeb sur les hypersurfaces non-dégénérées et dynamiquement convexes de en suivant les travaux de Long et Zhu mais en utilisant l’homologie symplectique -équivariante. Nous démontrons qu’il existe au moins orbites simples de Reeb sur toute hypersurface étoil�e et non dégénérée de satisfaisant la condition que le plus petit indice de Conley–Zehnder est au moins . Cette dernière condition est plus faible que celle de convexité dynamique.
Revised:
Accepted:
Published online:
Classification: 53D10, 37J55
Keywords: Reeb dynamics, Equivariant symplectic homology, Index jump
@article{AIF_2016__66_6_2485_0, author = {Gutt, Jean and Kang, Jungsoo}, title = {On the minimal number of periodic orbits on some hypersurfaces in $\mathbb{R}^{2n}$}, journal = {Annales de l'Institut Fourier}, pages = {2485--2505}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {6}, year = {2016}, doi = {10.5802/aif.3069}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3069/} }
TY - JOUR TI - On the minimal number of periodic orbits on some hypersurfaces in $\mathbb{R}^{2n}$ JO - Annales de l'Institut Fourier PY - 2016 DA - 2016/// SP - 2485 EP - 2505 VL - 66 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3069/ UR - https://doi.org/10.5802/aif.3069 DO - 10.5802/aif.3069 LA - en ID - AIF_2016__66_6_2485_0 ER -
%0 Journal Article %T On the minimal number of periodic orbits on some hypersurfaces in $\mathbb{R}^{2n}$ %J Annales de l'Institut Fourier %D 2016 %P 2485-2505 %V 66 %N 6 %I Association des Annales de l’institut Fourier %U https://doi.org/10.5802/aif.3069 %R 10.5802/aif.3069 %G en %F AIF_2016__66_6_2485_0
Gutt, Jean; Kang, Jungsoo. On the minimal number of periodic orbits on some hypersurfaces in $\mathbb{R}^{2n}$. Annales de l'Institut Fourier, Volume 66 (2016) no. 6, pp. 2485-2505. doi : 10.5802/aif.3069. https://aif.centre-mersenne.org/articles/10.5802/aif.3069/
[1] Théorie de Morse et homologie de Floer, Savoirs Actuels (Les Ulis). [Current Scholarship (Les Ulis)], EDP Sciences, Les Ulis; CNRS Éditions, Paris, 2010, xii+548 pages
[2] Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math., Tome 38 (1985) no. 3, pp. 253-289 | Article
[3] A note on Reeb dynamics on the tight 3-sphere, J. Mod. Dyn., Tome 1 (2007) no. 4, pp. 597-613 | Article
[4] Fredholm theory and transversality for the parametrized and for the -invariant symplectic action, J. Eur. Math. Soc. (JEMS), Tome 12 (2010) no. 5, pp. 1181-1229 | Article
[5] -equivariant symplectic homology and linearized contact homology (2012) (http://arxiv.org/abs/1212.3731v1)
[6] The index of Floer moduli problems for parametrized action functionals, Geom. Dedicata, Tome 165 (2013), pp. 5-24 | Article
[7] Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math., Tome 37 (1984) no. 2, pp. 207-253 | Article
[8] From one Reeb orbit to two (2012) (to appear in J. Diff. Geom., http://arxiv.org/abs/1202.4839)
[9] Convexity methods in Hamiltonian mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 19, Springer-Verlag, Berlin, 1990, x+247 pages
[10] Convex Hamiltonian energy surfaces and their periodic trajectories, Comm. Math. Phys., Tome 113 (1987) no. 3, pp. 419-469 | Article
[11] On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. of Math. (2), Tome 112 (1980) no. 2, pp. 283-319 | Article
[12] Iterated index and the mean Euler characterstic, J. Topol. Anal., Tome 7 (2015), pp. 453-481 | Article
[13] Closed Reeb orbits on the sphere and symplectically degenerate maxima, Acta Math. Vietnam., Tome 38 (2013) no. 1, pp. 55-78 | Article
[14] Perfect Reeb flows and action-index relations, Geom. Dedicata, Tome 174 (2015), pp. 105-120 | Article
[15] Generalized Conley-Zehnder index, Annales de la faculté des sciences de Toulouse, Tome 23 (2014) no. 4, pp. 907-932 | Article
[16] The positive equivariant symplectic homology as an invariant for some contact manifolds (2015) (to appear in Journal of Symplectic Geometry, http://arxiv.org/abs/1503.01443)
[17] The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. (2), Tome 148 (1998) no. 1, pp. 197-289 | Article
[18] Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2), Tome 157 (2003) no. 1, pp. 125-255 | Article
[19] The Weinstein conjecture for stable Hamiltonian structures, Geom. Topol., Tome 13 (2009) no. 2, pp. 901-941 | Article
[20] Equivariant symplectic homology and multiple closed Reeb orbits, Internat. J. Math., Tome 24 (2013) no. 13, 1350096 pages | Article
[21] The existence of two closed characteristics on every compact star-shaped hypersurface in , Acta Mathematica Sinica, English Series, Tome 32 (2016) no. 1, pp. 40-53 | Article
[22] Symmetric closed characteristics on symmetric compact convex hypersurfaces in , Commun. Math. Stat., Tome 2 (2014) no. 3-4, pp. 393-411 | Article
[23] Index theory for symplectic paths with applications, Progress in Mathematics, Tome 207, Birkhäuser Verlag, 2002, xxiv+380 pages
[24] Closed characteristics on compact convex hypersurfaces in , Ann. of Math. (2), Tome 155 (2002) no. 2, pp. 317-368 | Article
[25] Periodic solutions of a Hamiltonian system on a prescribed energy surface, J. Differential Equations, Tome 33 (1979) no. 3, pp. 336-352 | Article
[26] Lectures on Floer homology, Symplectic geometry and topology (Park City, UT, 1997) (IAS/Park City Math. Ser.) Tome 7, Amer. Math. Soc., Providence, 1999, pp. 143-229
[27] Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math., Tome 45 (1992) no. 10, pp. 1303-1360 | Article
[28] A biased view of symplectic cohomology, Current developments in mathematics, 2006, Int. Press, Somerville, MA, 2008, pp. 211-253
[29] Functors and computations in Floer homology with applications. I, Geom. Funct. Anal., Tome 9 (1999) no. 5, pp. 985-1033 | Article
[30] Symmetric closed characteristics on symmetric compact convex hypersurfaces in , J. Differential Equations, Tome 246 (2009) no. 11, pp. 4322-4331 | Article
[31] On a conjecture of Anosov, Adv. Math., Tome 230 (2012) no. 4-6, pp. 1597-1617 | Article
[32] Closed characteristics on compact convex hypersurfaces in (2013) (http://arxiv.org/abs/1305.4680)
[33] Resonance identity, stability, and multiplicity of closed characteristics on compact convex hypersurfaces, Duke Math. J., Tome 139 (2007) no. 3, pp. 411-462 | Article
Cited by Sources: