Pour la -homologie équivariante de tous les groupes de Bianchi (PSL sur les entiers quadratiques imaginaires), nous démontrons des formules pour la partie due à la torsion, en termes de quantités élémentaires de la théorie des nombres. Pour arriver à cette fin, nous introduisons une nouvelle technique pour le calcul de l’homologie de Bredon : un scindage des anneaux de représentation, qui nous permet d’adapter la technique récente de réduction des sous-complexes de torsion, développée pour l’homologie des groupes, à notre usage pour l’homologie de Bredon.
We establish formulae for the part due to torsion of the equivariant -homology of all the Bianchi groups (PSL of the imaginary quadratic integers), in terms of elementary number-theoretic quantities. To achieve this, we introduce a novel technique in the computation of Bredon homology: representation ring splitting, which allows us to adapt the recent technique of torsion subcomplex reduction from group homology to Bredon homology.
Révisé le :
Accepté le :
Publié le :
Keywords: Equivariant homology and cohomology, Equivariant $K$-theory, Bianchi groups, PSL$_2$ of the imaginary quadratic integers
Mot clés : Homologie et cohomologie équivariantes, $K$-théorie équivariante, Groupes de Bianchi, PSL$_2$ sur les entiers quadratiques imaginaires
Rahm, Alexander D. 1
@article{AIF_2016__66_4_1667_0, author = {Rahm, Alexander D.}, title = {On the equivariant $K$-homology of {PSL}$_2$ of the imaginary quadratic integers}, journal = {Annales de l'Institut Fourier}, pages = {1667--1689}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {4}, year = {2016}, doi = {10.5802/aif.3047}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3047/} }
TY - JOUR AU - Rahm, Alexander D. TI - On the equivariant $K$-homology of PSL$_2$ of the imaginary quadratic integers JO - Annales de l'Institut Fourier PY - 2016 SP - 1667 EP - 1689 VL - 66 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3047/ DO - 10.5802/aif.3047 LA - en ID - AIF_2016__66_4_1667_0 ER -
%0 Journal Article %A Rahm, Alexander D. %T On the equivariant $K$-homology of PSL$_2$ of the imaginary quadratic integers %J Annales de l'Institut Fourier %D 2016 %P 1667-1689 %V 66 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3047/ %R 10.5802/aif.3047 %G en %F AIF_2016__66_4_1667_0
Rahm, Alexander D. On the equivariant $K$-homology of PSL$_2$ of the imaginary quadratic integers. Annales de l'Institut Fourier, Tome 66 (2016) no. 4, pp. 1667-1689. doi : 10.5802/aif.3047. https://aif.centre-mersenne.org/articles/10.5802/aif.3047/
[1] Classifying space for proper actions and -theory of group -algebras, -algebras: 1943–1993 (San Antonio, TX, 1993) (Contemp. Math.), Volume 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240-291 | DOI
[2] Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî, Math. Ann., Volume 40 (1892) no. 3, pp. 332-412 | DOI
[3] Cohomology of groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, 1994, x+306 pages (Corrected reprint of the 1982 original)
[4] Groups with the Haagerup property, Progress in Mathematics, 197, Birkhäuser Verlag, Basel, 2001, viii+126 pages (Gromov’s a-T-menability) | DOI
[5] Spaces with measured walls, the Haagerup property and property (T), Ergodic Theory Dynam. Systems, Volume 24 (2004) no. 6, pp. 1895-1908 | DOI
[6] Zur Struktur der über einigen imaginär-quadratischen Zahlringen, Math. Z., Volume 183 (1983) no. 2, pp. 255-279 | DOI
[7] Equivariant -homology of Bianchi groups in the case of non-trivial class group (to appear in Münster Journal of Mathematics, http://wwwmath1.uni-muenster.de/mjm/acc/Fuchs.pdf)
[8] A Gauss-Bonnet formula for discrete arithmetically defined groups, Ann. Sci. École Norm. Sup. (4), Volume 4 (1971), pp. 409-455
[9] -theory and -theory for groups which act properly and isometrically on Hilbert space, Invent. Math., Volume 144 (2001) no. 1, pp. 23-74 | DOI
[10] Operator -theory for the group , J. Reine Angew. Math., Volume 463 (1995), pp. 99-152
[11] Ueber binäre Formen mit linearen Transformationen in sich selbst, Math. Ann., Volume 9 (1875) no. 2, pp. 183-208 | DOI
[12] Die Konjugationsklassenanzahlen der endlichen Untergruppen in der Norm-Eins-Gruppe von Maximalordnungen in Quaternionenalgebren, Universität Bonn, Germany (1980) (Ph. D. Thesis)
[13] Imaginärquadratische Einbettung von Maximalordnungen rationaler Quaternionenalgebren, und die nichtzyklischen endlichen Untergruppen der Bianchi-Gruppen (2015) (preprint, http://hal.archives-ouvertes.fr/hal-00720823/en/)
[14] Bredon homology and equivariant -homology of hyperbolic Coxeter groups (work in advanced progress)
[15] Chern characters for the equivariant -theory of proper -CW-complexes, Cohomological methods in homotopy theory (Bellaterra, 1998) (Progr. Math.), Volume 196, Birkhäuser, Basel, 2001, pp. 217-247
[16] Cohomology of over imaginary quadratic integers, Bonner Mathematische Schriften [Bonn Mathematical Publications], 128, Universität Bonn, Mathematisches Institut, Bonn, 1979, vi+83 pages (Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1979)
[17] Proper group actions and the Baum-Connes conjecture, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2003, viii+131 pages | DOI
[18] Mémoire : Les groupes kleinéens, Acta Math., Volume 3 (1883) no. 1, pp. 49-92 | DOI
[19] Bianchi.gp, 2010 Open source program (GNU general public license), validated by the CNRS: http://www.projet-plume.org/fiche/bianchigp, Part of the Pari/GP Development Center scripts library
[20] (Co)homologies and K-theory of Bianchi groups using computational geometric models, Institut Fourier, Université de Grenoble, France and Universität Göttingen, Germany (2010) (Ph. D. Thesis)
[21] Homology and -theory of the Bianchi groups, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 11-12, pp. 615-619 | DOI
[22] Higher torsion in the Abelianization of the full Bianchi groups, LMS J. Comput. Math., Volume 16 (2013), pp. 344-365
[23] The homological torsion of of the imaginary quadratic integers, Trans. Amer. Math. Soc., Volume 365 (2013) no. 3, pp. 1603-1635 | DOI
[24] Accessing the cohomology of discrete groups above their virtual cohomological dimension, J. Algebra, Volume 404 (2014), pp. 152-175 | DOI
[25] The integral homology of of imaginary quadratic integers with nontrivial class group, J. Pure Appl. Algebra, Volume 215 (2011) no. 6, pp. 1443-1472 | DOI
[26] Bredon homology and equivariant -homology of , J. Pure Appl. Algebra, Volume 212 (2008) no. 5, pp. 1046-1059 | DOI
[27] Equivariant -homology for some Coxeter groups, J. Lond. Math. Soc. (2), Volume 75 (2007) no. 3, pp. 773-790 | DOI
[28] Le problème des groupes de congruence pour SL2, Ann. of Math. (2), Volume 92 (1970), pp. 489-527
[29] Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977, x+170 pages (Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42)
[30] On the equivariant Chern homomorphism, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., Volume 24 (1976) no. 10, pp. 909-913
[31] The cohomology of , Topology, Volume 17 (1978) no. 1, pp. 1-22
[32] Introduction to the Baum-Connes conjecture, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2002, x+104 pages (From notes taken by Indira Chatterji, With an appendix by Guido Mislin) | DOI
[33] Rational homology of Bianchi groups, Math. Ann., Volume 272 (1985) no. 3, pp. 399-419 | DOI
Cité par Sources :