On the continuity of Fourier multipliers on the homogeneous Sobolev spaces W ˙ 1 1 (R d )
Annales de l'Institut Fourier, Volume 66 (2016) no. 3, pp. 1247-1260.

In this paper we prove that every Fourier multiplier on the homogeneous Sobolev space W ˙ 1 1 ( d ) is a continuous function. This theorem is a generalization of the result of A. Bonami and S. Poornima for Fourier multipliers, which are homogeneous functions of degree zero.

Dans cet article, nous prouvons que chaque multiplicateur de Fourier sur l’espace homogène W ˙ 1 1 ( d ) de Sobolev est une fonction continue. Notre théorème est une généralisation du résultat de A. Bonami et S. Poornima sur les multiplicateurs de Fourier, qui sont des fonctions homogènes de degré zéro.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3036
Classification: 42B15, 43A22
Keywords: Fourier multipliers, Sobolev spaces, Riesz product
Mot clés : multiplicateurs de Fourier, espaces de Sobolev, Produits de Riesz

Kazaniecki, Krystian 1; Wojciechowski, Michał 2

1 University of Warsaw Institute of Mathematics ul. Banacha 2 02-097 Warszawa,(Poland)
2 Polish Academy of Sciences Institute of Mathematics ul. Śniadeckich 8 00-956 Warszawa, (Poland)
@article{AIF_2016__66_3_1247_0,
     author = {Kazaniecki, Krystian and Wojciechowski, Micha{\l}},
     title = {On the continuity of {Fourier} multipliers on the homogeneous {Sobolev} spaces ${\dot{W}^1_1(R^d)}$},
     journal = {Annales de l'Institut Fourier},
     pages = {1247--1260},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {66},
     number = {3},
     year = {2016},
     doi = {10.5802/aif.3036},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3036/}
}
TY  - JOUR
AU  - Kazaniecki, Krystian
AU  - Wojciechowski, Michał
TI  - On the continuity of Fourier multipliers on the homogeneous Sobolev spaces ${\dot{W}^1_1(R^d)}$
JO  - Annales de l'Institut Fourier
PY  - 2016
SP  - 1247
EP  - 1260
VL  - 66
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3036/
DO  - 10.5802/aif.3036
LA  - en
ID  - AIF_2016__66_3_1247_0
ER  - 
%0 Journal Article
%A Kazaniecki, Krystian
%A Wojciechowski, Michał
%T On the continuity of Fourier multipliers on the homogeneous Sobolev spaces ${\dot{W}^1_1(R^d)}$
%J Annales de l'Institut Fourier
%D 2016
%P 1247-1260
%V 66
%N 3
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3036/
%R 10.5802/aif.3036
%G en
%F AIF_2016__66_3_1247_0
Kazaniecki, Krystian; Wojciechowski, Michał. On the continuity of Fourier multipliers on the homogeneous Sobolev spaces ${\dot{W}^1_1(R^d)}$. Annales de l'Institut Fourier, Volume 66 (2016) no. 3, pp. 1247-1260. doi : 10.5802/aif.3036. https://aif.centre-mersenne.org/articles/10.5802/aif.3036/

[1] Bonami, A.; Poornima, S. Nonmultipliers of the Sobolev spaces W k,1 (R n ), J. Funct. Anal., Volume 71 (1987) no. 1, pp. 175-181 | DOI

[2] Déchamps, Myriam Sous-espaces invariants de L p (G), G groupe abélien compact, Harmonic analysis (Publ. Math. Orsay 81), Volume 8, Univ. Paris XI, Orsay, 1981, Exp. No. 3, 15 pages

[3] Deny, J.; Lions, J. L. Les espaces du type de Beppo Levi, Ann. Inst. Fourier, Grenoble, Volume 5 (1953–54), p. 305-370 (1955)

[4] Kazaniecki, Krystian; Wojciechowski, Michał On the equivalence between the sets of the trigonometric polynomials (http://arxiv.org/abs/1502.05994)

[5] Kazaniecki, Krystian; Wojciechowski, Michał Ornstein’s non-inequality Riesz product aproach. (http://arxiv.org/abs/1406.7319)

[6] Latała, Rafał L 1 -norm of combinations of products of independent random variables, Israel J. Math., Volume 203 (2014) no. 1, pp. 295-308 | DOI

[7] de Leeuw, Karel On L p multipliers, Ann. of Math. (2), Volume 81 (1965), pp. 364-379

[8] Meyer, Yves Endomorphismes des idéaux fermés de L 1 (G), classes de Hardy et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (4), Volume 1 (1968), pp. 499-580

[9] Ornstein, Donald A non-equality for differential operators in the L 1 norm., Arch. Rational Mech. Anal., Volume 11 (1962), pp. 40-49

[10] Poornima, S. On the Sobolev spaces W k,1 (R n ), Harmonic analysis (Cortona, 1982) (Lecture Notes in Math.), Volume 992, Springer, Berlin, 1983, pp. 161-173 | DOI

[11] Rudin, Walter Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991, xviii+424 pages

[12] Stein, Elias M.; Weiss, Guido Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971, x+297 pages (Princeton Mathematical Series, No. 32)

[13] Wojciechowski, Michał On the strong type multiplier norms of rational functions in several variables, Illinois J. Math., Volume 42 (1998) no. 4, pp. 582-600 http://projecteuclid.org/euclid.ijm/1255985462

Cited by Sources: