By a theorem of the first named author, generates a bounded composition operator on the Hardy space of Dirichlet series only if , where is a nonnegative integer and a Dirichlet series with the following mapping properties: maps the right half-plane into the half-plane if and is either identically zero or maps the right half-plane into itself if is positive. It is shown that the th approximation numbers of bounded composition operators on are bounded below by a constant times for some when and bounded below by a constant times for some when is positive. Both results are best possible. Estimates rely on a combination of soft tools from Banach space theory (-numbers, type and cotype of Banach spaces, Weyl inequalities, and Schauder bases) and a certain interpolation method for , developed in an earlier paper, using estimates of solutions of the equation. A transference principle from of the unit disc is discussed, leading to explicit examples of compact composition operators on with approximation numbers decaying at a variety of sub-exponential rates. Finally, a new Littlewood–Paley formula is established, yielding a sufficient condition for a composition operator on to be compact.
Un théorème du premier auteur affirme que définit un opérateur de composition borné sur l’espace de Hardy des séries de Dirichlet () dès lors que , où est un entier positif ou nul et est une série de Dirichlet qui envoie le demi-plan droit sur le demi-plan lorsque et soit est identiquement nulle, soit envoie le demi-plan droit dans lui-même si . Nous prouvons que le -ième nombre d’approximation de ces opérateurs de composition est minoré, à une constante multiplicative près, par , si et par , , si . Ces minorations sont optimales et reposent sur une combinaison d’outils venant à la fois de la théorie des espaces de Banach (type et cotype, inégalités de Weyl, bases de Schauder) et sur une méthode d’interpolation pour utilisant des estimations des solutions d’une équation . Un principe de transfert avec les espaces du disque est discuté, conduisant à des exemples explicites d’opérateurs de composition ayant des nombres d’approximation avec divers types de décroissance sous-exponentielle. Enfin, une nouvelle formule de Littlewood-Paley est établie, conduisant à une condition suffisante de compacité pour un opérateur de composition sur .
Revised:
Accepted:
Published online:
Keywords: Dirichlets series, composition operators, approximation numbes
Mot clés : Séries de Dirichlet, opérateurs de composition, nombres d’approximation
@article{AIF_2016__66_2_551_0, author = {Bayart, Fr\'ed\'eric and Queff\'elec, Herv\'e and Seip, Kristian}, title = {Approximation numbers of composition operators on $H^p$ spaces of {Dirichlet} series}, journal = {Annales de l'Institut Fourier}, pages = {551--588}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {2}, year = {2016}, doi = {10.5802/aif.3019}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3019/} }
TY - JOUR AU - Bayart, Frédéric AU - Queffélec, Hervé AU - Seip, Kristian TI - Approximation numbers of composition operators on $H^p$ spaces of Dirichlet series JO - Annales de l'Institut Fourier PY - 2016 SP - 551 EP - 588 VL - 66 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3019/ DO - 10.5802/aif.3019 LA - en ID - AIF_2016__66_2_551_0 ER -
%0 Journal Article %A Bayart, Frédéric %A Queffélec, Hervé %A Seip, Kristian %T Approximation numbers of composition operators on $H^p$ spaces of Dirichlet series %J Annales de l'Institut Fourier %D 2016 %P 551-588 %V 66 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3019/ %R 10.5802/aif.3019 %G en %F AIF_2016__66_2_551_0
Bayart, Frédéric; Queffélec, Hervé; Seip, Kristian. Approximation numbers of composition operators on $H^p$ spaces of Dirichlet series. Annales de l'Institut Fourier, Volume 66 (2016) no. 2, pp. 551-588. doi : 10.5802/aif.3019. https://aif.centre-mersenne.org/articles/10.5802/aif.3019/
[1] Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN (2014) no. 16, pp. 4368-4378
[2] Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math., Volume 136 (2002) no. 3, pp. 203-236 | DOI
[3] Compact composition operators on a Hilbert space of Dirichlet series, Illinois J. Math., Volume 47 (2003) no. 3, pp. 725-743 http://projecteuclid.org/euclid.ijm/1258138190
[4] Interpolating sequences in the polydisc, Trans. Amer. Math. Soc., Volume 302 (1987) no. 1, pp. 161-169 | DOI
[5] Entropy, compactness and the approximation of operators, Cambridge Tracts in Mathematics, 98, Cambridge University Press, Cambridge, 1990, x+277 pages | DOI
[6] Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3), Volume 53 (1986) no. 1, pp. 112-142 | DOI
[7] Absolutely summing operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995, xvi+474 pages | DOI
[8] Some spaces which are uncomplemented in , Pacific J. Math., Volume 43 (1972), pp. 327-339 | DOI
[9] The composition operators on the space of Dirichlet series with square summable coefficients, Michigan Math. J., Volume 46 (1999) no. 2, pp. 313-329 | DOI
[10] A Hilbert space of Dirichlet series and systems of dilated functions in , Duke Math. J., Volume 86 (1997) no. 1, pp. 1-37 | DOI
[11] Conjugate series and a theorem of Paley, Pacific J. Math., Volume 8 (1958), pp. 437-446 | DOI
[12] Eigenvalues of -summing and -type operators in Banach spaces, J. Funct. Anal., Volume 32 (1979) no. 3, pp. 353-380 | DOI
[13] Introduction to spaces, Cambridge Tracts in Mathematics, 115, Cambridge University Press, Cambridge, 1998, xiv+289 pages (With two appendices by V. P. Havin [Viktor Petrovich Khavin])
[14] Introduction à l’étude des espaces de Banach, Cours Spécialisés [Specialized Courses], 12, Société Mathématique de France, Paris, 2004, xxiv+627 pages (Analyse et probabilités. [Analysis and probability theory])
[15] On approximation numbers of composition operators, J. Approx. Theory, Volume 164 (2012) no. 4, pp. 431-459 | DOI
[16] Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math., Volume 58 (1976) no. 1, pp. 45-90
[17] Hilbert’s inequality, J. London Math. Soc. (2), Volume 8 (1974), pp. 73-82 | DOI
[18] Local properties of Hilbert spaces of Dirichlet series, J. Funct. Anal., Volume 261 (2011) no. 9, pp. 2669-2696 | DOI
[19] On the boundary behaviour of the Hardy spaces of Dirichlet series and a frame bound estimate, J. Reine Angew. Math., Volume 663 (2012), pp. 33-66 | DOI
[20] -numbers of operators in Banach spaces, Studia Math., Volume 51 (1974), pp. 201-223
[21] Weyl numbers and eigenvalues of operators in Banach spaces, Math. Ann., Volume 247 (1980) no. 2, pp. 149-168 | DOI
[22] Eigenvalues and -numbers, Cambridge Studies in Advanced Mathematics, 13, Cambridge University Press, Cambridge, 1987, 360 pages
[23] Sur les espaces de Banach -convexes, Seminar on Functional Analysis, 1979–1980 (French), École Polytech., Palaiseau, 1980, Exp. No. 11, 15 pages
[24] Approximation numbers of composition operators on the space of Dirichlet series, J. Funct. Anal., Volume 268 (2015) no. 6, pp. 1612-1648 | DOI
[25] Decay rates for approximation numbers of composition operators, J. Anal. Math., Volume 125 (2015), pp. 371-399 | DOI
[26] Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962, ix+285 pages
[27] Private communication (Centre for Advanced Study, Oslo, 2012.)
[28] Integral means and boundary limits of Dirichlet series, Bull. Lond. Math. Soc., Volume 41 (2009) no. 3, pp. 411-422 | DOI
[29] Interpolation by Dirichlet series in , Linear and complex analysis (Amer. Math. Soc. Transl. Ser. 2), Volume 226, Amer. Math. Soc., Providence, RI, 2009, pp. 153-164
[30] Zeros of functions in Hilbert spaces of Dirichlet series, Math. Z., Volume 274 (2013) no. 3-4, pp. 1327-1339 | DOI
[31] On some interpolation problems for analytic functions, Amer. J. Math., Volume 83 (1961), pp. 513-532 | DOI
[32] Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993, xvi+223 pages | DOI
[33] Criteria for functions to be of Hardy class , Proc. Amer. Math. Soc., Volume 75 (1979) no. 1, pp. 69-72 | DOI
Cited by Sources: