Un théorème du premier auteur affirme que définit un opérateur de composition borné sur l’espace de Hardy des séries de Dirichlet () dès lors que , où est un entier positif ou nul et est une série de Dirichlet qui envoie le demi-plan droit sur le demi-plan lorsque et soit est identiquement nulle, soit envoie le demi-plan droit dans lui-même si . Nous prouvons que le -ième nombre d’approximation de ces opérateurs de composition est minoré, à une constante multiplicative près, par , si et par , , si . Ces minorations sont optimales et reposent sur une combinaison d’outils venant à la fois de la théorie des espaces de Banach (type et cotype, inégalités de Weyl, bases de Schauder) et sur une méthode d’interpolation pour utilisant des estimations des solutions d’une équation . Un principe de transfert avec les espaces du disque est discuté, conduisant à des exemples explicites d’opérateurs de composition ayant des nombres d’approximation avec divers types de décroissance sous-exponentielle. Enfin, une nouvelle formule de Littlewood-Paley est établie, conduisant à une condition suffisante de compacité pour un opérateur de composition sur .
By a theorem of the first named author, generates a bounded composition operator on the Hardy space of Dirichlet series only if , where is a nonnegative integer and a Dirichlet series with the following mapping properties: maps the right half-plane into the half-plane if and is either identically zero or maps the right half-plane into itself if is positive. It is shown that the th approximation numbers of bounded composition operators on are bounded below by a constant times for some when and bounded below by a constant times for some when is positive. Both results are best possible. Estimates rely on a combination of soft tools from Banach space theory (-numbers, type and cotype of Banach spaces, Weyl inequalities, and Schauder bases) and a certain interpolation method for , developed in an earlier paper, using estimates of solutions of the equation. A transference principle from of the unit disc is discussed, leading to explicit examples of compact composition operators on with approximation numbers decaying at a variety of sub-exponential rates. Finally, a new Littlewood–Paley formula is established, yielding a sufficient condition for a composition operator on to be compact.
Révisé le :
Accepté le :
Publié le :
Keywords: Dirichlets series, composition operators, approximation numbes
Mot clés : Séries de Dirichlet, opérateurs de composition, nombres d’approximation
Bayart, Frédéric 1, 2 ; Queffélec, Hervé 3 ; Seip, Kristian 4
@article{AIF_2016__66_2_551_0, author = {Bayart, Fr\'ed\'eric and Queff\'elec, Herv\'e and Seip, Kristian}, title = {Approximation numbers of composition operators on $H^p$ spaces of {Dirichlet} series}, journal = {Annales de l'Institut Fourier}, pages = {551--588}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {2}, year = {2016}, doi = {10.5802/aif.3019}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3019/} }
TY - JOUR AU - Bayart, Frédéric AU - Queffélec, Hervé AU - Seip, Kristian TI - Approximation numbers of composition operators on $H^p$ spaces of Dirichlet series JO - Annales de l'Institut Fourier PY - 2016 SP - 551 EP - 588 VL - 66 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3019/ DO - 10.5802/aif.3019 LA - en ID - AIF_2016__66_2_551_0 ER -
%0 Journal Article %A Bayart, Frédéric %A Queffélec, Hervé %A Seip, Kristian %T Approximation numbers of composition operators on $H^p$ spaces of Dirichlet series %J Annales de l'Institut Fourier %D 2016 %P 551-588 %V 66 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3019/ %R 10.5802/aif.3019 %G en %F AIF_2016__66_2_551_0
Bayart, Frédéric; Queffélec, Hervé; Seip, Kristian. Approximation numbers of composition operators on $H^p$ spaces of Dirichlet series. Annales de l'Institut Fourier, Tome 66 (2016) no. 2, pp. 551-588. doi : 10.5802/aif.3019. https://aif.centre-mersenne.org/articles/10.5802/aif.3019/
[1] Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN (2014) no. 16, pp. 4368-4378
[2] Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math., Volume 136 (2002) no. 3, pp. 203-236 | DOI
[3] Compact composition operators on a Hilbert space of Dirichlet series, Illinois J. Math., Volume 47 (2003) no. 3, pp. 725-743 http://projecteuclid.org/euclid.ijm/1258138190
[4] Interpolating sequences in the polydisc, Trans. Amer. Math. Soc., Volume 302 (1987) no. 1, pp. 161-169 | DOI
[5] Entropy, compactness and the approximation of operators, Cambridge Tracts in Mathematics, 98, Cambridge University Press, Cambridge, 1990, x+277 pages | DOI
[6] Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3), Volume 53 (1986) no. 1, pp. 112-142 | DOI
[7] Absolutely summing operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995, xvi+474 pages | DOI
[8] Some spaces which are uncomplemented in , Pacific J. Math., Volume 43 (1972), pp. 327-339 | DOI
[9] The composition operators on the space of Dirichlet series with square summable coefficients, Michigan Math. J., Volume 46 (1999) no. 2, pp. 313-329 | DOI
[10] A Hilbert space of Dirichlet series and systems of dilated functions in , Duke Math. J., Volume 86 (1997) no. 1, pp. 1-37 | DOI
[11] Conjugate series and a theorem of Paley, Pacific J. Math., Volume 8 (1958), pp. 437-446 | DOI
[12] Eigenvalues of -summing and -type operators in Banach spaces, J. Funct. Anal., Volume 32 (1979) no. 3, pp. 353-380 | DOI
[13] Introduction to spaces, Cambridge Tracts in Mathematics, 115, Cambridge University Press, Cambridge, 1998, xiv+289 pages (With two appendices by V. P. Havin [Viktor Petrovich Khavin])
[14] Introduction à l’étude des espaces de Banach, Cours Spécialisés [Specialized Courses], 12, Société Mathématique de France, Paris, 2004, xxiv+627 pages (Analyse et probabilités. [Analysis and probability theory])
[15] On approximation numbers of composition operators, J. Approx. Theory, Volume 164 (2012) no. 4, pp. 431-459 | DOI
[16] Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math., Volume 58 (1976) no. 1, pp. 45-90
[17] Hilbert’s inequality, J. London Math. Soc. (2), Volume 8 (1974), pp. 73-82 | DOI
[18] Local properties of Hilbert spaces of Dirichlet series, J. Funct. Anal., Volume 261 (2011) no. 9, pp. 2669-2696 | DOI
[19] On the boundary behaviour of the Hardy spaces of Dirichlet series and a frame bound estimate, J. Reine Angew. Math., Volume 663 (2012), pp. 33-66 | DOI
[20] -numbers of operators in Banach spaces, Studia Math., Volume 51 (1974), pp. 201-223
[21] Weyl numbers and eigenvalues of operators in Banach spaces, Math. Ann., Volume 247 (1980) no. 2, pp. 149-168 | DOI
[22] Eigenvalues and -numbers, Cambridge Studies in Advanced Mathematics, 13, Cambridge University Press, Cambridge, 1987, 360 pages
[23] Sur les espaces de Banach -convexes, Seminar on Functional Analysis, 1979–1980 (French), École Polytech., Palaiseau, 1980, Exp. No. 11, 15 pages
[24] Approximation numbers of composition operators on the space of Dirichlet series, J. Funct. Anal., Volume 268 (2015) no. 6, pp. 1612-1648 | DOI
[25] Decay rates for approximation numbers of composition operators, J. Anal. Math., Volume 125 (2015), pp. 371-399 | DOI
[26] Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962, ix+285 pages
[27] Private communication (Centre for Advanced Study, Oslo, 2012.)
[28] Integral means and boundary limits of Dirichlet series, Bull. Lond. Math. Soc., Volume 41 (2009) no. 3, pp. 411-422 | DOI
[29] Interpolation by Dirichlet series in , Linear and complex analysis (Amer. Math. Soc. Transl. Ser. 2), Volume 226, Amer. Math. Soc., Providence, RI, 2009, pp. 153-164
[30] Zeros of functions in Hilbert spaces of Dirichlet series, Math. Z., Volume 274 (2013) no. 3-4, pp. 1327-1339 | DOI
[31] On some interpolation problems for analytic functions, Amer. J. Math., Volume 83 (1961), pp. 513-532 | DOI
[32] Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993, xvi+223 pages | DOI
[33] Criteria for functions to be of Hardy class , Proc. Amer. Math. Soc., Volume 75 (1979) no. 1, pp. 69-72 | DOI
Cité par Sources :