The aim of this paper is to construct rational surface automorphisms with positive entropy by means of the concept of orbit data. The concept enables us to introduce some mild and verifiable condition, and to show that if an orbit data satisfies the condition, then there exists an automorphism realizing the orbit data. Applying this result, we describe the set of entropy values of the rational surface automorphisms in terms of Weyl groups.
Le but de ce travail est de construire des automorphismes de surfaces rationnelles d’entropie positive au moyen de la notion de donnée d’orbite. Celle-ci nous permet d’introduire une condition faible et vérifiable, et de démontrer que si une donnée d’orbite satisfait cette condition, alors il existe un automorphisme qui réalise la donnée d’orbite. En appliquant ce résultat, nous décrivons l’ensemble des valeurs d’entropie des automorphismes de surfaces rationnelles du point de vue des groupes de Weyl.
Revised:
Accepted:
Published online:
Classification: 14E07, 14J50, 37F99
Keywords: rational surface, automorphism, entropy, orbit data
@article{AIF_2016__66_1_377_0, author = {Uehara, Takato}, title = {Rational {Surface} {Automorphisms} with {Positive} {Entropy}}, journal = {Annales de l'Institut Fourier}, pages = {377--432}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {1}, year = {2016}, doi = {10.5802/aif.3014}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3014/} }
TY - JOUR TI - Rational Surface Automorphisms with Positive Entropy JO - Annales de l'Institut Fourier PY - 2016 DA - 2016/// SP - 377 EP - 432 VL - 66 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3014/ UR - https://doi.org/10.5802/aif.3014 DO - 10.5802/aif.3014 LA - en ID - AIF_2016__66_1_377_0 ER -
Uehara, Takato. Rational Surface Automorphisms with Positive Entropy. Annales de l'Institut Fourier, Volume 66 (2016) no. 1, pp. 377-432. doi : 10.5802/aif.3014. https://aif.centre-mersenne.org/articles/10.5802/aif.3014/
[1] Geometry of the plane Cremona maps, Lecture Notes in Mathematics, Tome 1769, Springer-Verlag, Berlin, 2002, xvi+257 pages | Article
[2] Complex algebraic surfaces, London Mathematical Society Student Texts, Tome 34, Cambridge University Press, Cambridge, 1996, x+132 pages (Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid) | Article
[3] Periodicities in linear fractional recurrences: degree growth of birational surface maps, Michigan Math. J., Tome 54 (2006) no. 3, pp. 647-670 | Article
[4] Dynamics of rational surface automorphisms: linear fractional recurrences, J. Geom. Anal., Tome 19 (2009) no. 3, pp. 553-583 | Article
[5] Dynamique des automorphismes des surfaces projectives complexes, C. R. Acad. Sci. Paris Sér. I Math., Tome 328 (1999) no. 10, pp. 901-906 | Article
[6] Cremona transformations, surface automorphisms, and plane cubics, Michigan Math. J., Tome 60 (2011) no. 2, pp. 409-440 (With an appendix by Igor Dolgachev) | Article
[7] Point sets in projective spaces and theta functions, Astérisque (1988) no. 165, 210 pp. (1989) pages
[8] On the entropy of holomorphic maps, Enseign. Math. (2), Tome 49 (2003) no. 3-4, pp. 217-235
[9] Blowings-up of and their blowings-down, Duke Math. J., Tome 52 (1985) no. 1, pp. 129-148 | Article
[10] Rational surfaces with infinite automorphism group and no antipluricanonical curve, Proc. Amer. Math. Soc., Tome 99 (1987) no. 3, pp. 409-414 | Article
[11] Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci. (2007) no. 105, pp. 49-89 | Article
[12] On rational surfaces. I. Irreducible curves of arithmetic genus or , Mem. Coll. Sci. Univ. Kyoto Ser. A Math., Tome 32 (1960), pp. 351-370
[13] On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., Tome 33 (1960/1961), pp. 271-293
[14] Volume growth and entropy, Israel J. Math., Tome 57 (1987) no. 3, pp. 285-300 | Article
Cited by Sources: