Le but de ce travail est de fournir une formule d’intégration le long des fibres de la tour de Demailly, évitant l’élimination pas-à-pas des classes de cohomologie horizontales, et permettant des calculs effectifs. Une modification naturelle de la tour de Demailly est introduite et une formule récursive pour la classe de Segre totale au niveau est obtenue. Ensuite, l’interprétation des classes de Segre individuelles comme des coefficients mêne à une formule de résidus itérés.
The goal of this work is to provide a fiber integration formula on the Demailly tower, that avoids step-by-step elimination of horizontal cohomology classes, and that yields computational effectivity. A natural twist of the Demailly tower is introduced and a recursive formula for the total Segre class at -th level is obtained. Then, by interpreting single Segre classes as coefficients, an iterated residue formula is derived.
Révisé le :
Accepté le :
Publié le :
Keywords: Demailly tower of logarithmic directed manifold, Gysin homomorphism, Segre classes, iterated Laurent series.
Mot clés : Tour de Demailly logarithmique, morphisme de Gysin, classes de Segre. séries de Laurent itérées.
Darondeau, Lionel 1
@article{AIF_2016__66_1_29_0, author = {Darondeau, Lionel}, title = {Fiber {Integration} on the {Demailly} {Tower}}, journal = {Annales de l'Institut Fourier}, pages = {29--54}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {66}, number = {1}, year = {2016}, doi = {10.5802/aif.3004}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3004/} }
TY - JOUR AU - Darondeau, Lionel TI - Fiber Integration on the Demailly Tower JO - Annales de l'Institut Fourier PY - 2016 SP - 29 EP - 54 VL - 66 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3004/ DO - 10.5802/aif.3004 LA - en ID - AIF_2016__66_1_29_0 ER -
%0 Journal Article %A Darondeau, Lionel %T Fiber Integration on the Demailly Tower %J Annales de l'Institut Fourier %D 2016 %P 29-54 %V 66 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3004/ %R 10.5802/aif.3004 %G en %F AIF_2016__66_1_29_0
Darondeau, Lionel. Fiber Integration on the Demailly Tower. Annales de l'Institut Fourier, Tome 66 (2016) no. 1, pp. 29-54. doi : 10.5802/aif.3004. https://aif.centre-mersenne.org/articles/10.5802/aif.3004/
[1] Thom polynomials and the Green-Griffiths conjecture (http://arxiv.org/abs/1011.4710)
[2] Moduli of map germs, Thom polynomials and the Green-Griffiths conjecture, Contributions to algebraic geometry (EMS Ser. Congr. Rep.), Eur. Math. Soc., Zürich, 2012, pp. 141-167 | DOI
[3] Hyperbolicity related problems for complete intersection varieties, Compos. Math., Volume 150 (2014) no. 3, pp. 369-395 | DOI
[4] On the Logarithmic Green-Griffiths Conjecture International Mathematics Research Notices (2015), to appear
[5] Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Algebraic geometry—Santa Cruz 1995 (Proc. Sympos. Pure Math.), Volume 62, Amer. Math. Soc., Providence, RI, 1997, pp. 285-360 | DOI
[6] Holomorphic Morse inequalities and the Green-Griffiths-Lang conjecture, Pure Appl. Math. Q., Volume 7 (2011) no. 4, Special Issue: In memory of Eckart Viehweg, pp. 1165-1207 | DOI
[7] Logarithmic jet bundles and applications, Osaka J. Math., Volume 38 (2001) no. 1, pp. 185-237 http://projecteuclid.org/euclid.ojm/1153492319
[8] Differential equations on complex projective hypersurfaces of low dimension, Compos. Math., Volume 144 (2008) no. 4, pp. 920-932 | DOI
[9] Existence of global invariant jet differentials on projective hypersurfaces of high degree, Math. Ann., Volume 344 (2009) no. 2, pp. 293-315 | DOI
[10] Effective algebraic degeneracy, Invent. Math., Volume 180 (2010) no. 1, pp. 161-223 | DOI
[11] A survey on hyperbolicity of projective hypersurfaces, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2011, x+109 pages ([On the title page: A survey on hiperbolicity of projective hypersurfaces])
[12] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2, Springer-Verlag, Berlin, 1998, xiv+470 pages | DOI
[13] Algebraic topology, Cambridge University Press, Cambridge, 2002, xii+544 pages
[14] Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 48, Springer-Verlag, Berlin, 2004, xviii+387 pages (Classical setting: line bundles and linear series) | DOI
[15] Jets de Demailly-Semple d’ordres 4 et 5 en dimension 2, Int. J. Contemp. Math. Sci., Volume 3 (2008) no. 17-20, pp. 861-933
[16] Application of computational invariant theory to Kobayashi hyperbolicity and to Green-Griffiths algebraic degeneracy, J. Symbolic Comput., Volume 45 (2010) no. 10, pp. 986-1074 | DOI
[17] Algebraic Differential Equations for Entire Holomorphic Curves in Projective Hypersurfaces of General Type: Optimal Lower Degree Bound, Geometry and Analysis on Manifolds (Ochiai, Takushiro; Mabuchi, Toshiki; Maeda, Yoshiaki; Noguchi, Junjiro; Weinstein, Alan, eds.) (Progress in Mathematics), Volume 308, Springer International Publishing, 2015, pp. 41-142
[18] Families of hypersurfaces of large degree, J. Eur. Math. Soc. (JEMS), Volume 14 (2012) no. 3, pp. 911-936 | DOI
[19] Logarithmic jet spaces and extensions of de Franchis’ theorem, Contributions to several complex variables (Aspects Math., E9), Vieweg, Braunschweig, 1986, pp. 227-249
[20] The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977, xiv+720 pages
[21] Techniques de construction de différentielles holomorphes et hyperbolicité », Séminaire Bourbaki (Paris) (2012)
[22] Équations différentielles sur les hypersurfaces de , J. Math. Pures Appl. (9), Volume 86 (2006) no. 4, pp. 322-341 | DOI
[23] Numerical criteria for the positivity of the difference of ample divisors, Math. Z., Volume 219 (1995) no. 3, pp. 387-401 | DOI
Cité par Sources :