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FIBER INTEGRATION ON THE DEMAILLY TOWER

by Lionel DARONDEAU

Abstract. — The goal of this work is to provide a fiber integration formula on
the Demailly tower, that avoids step-by-step elimination of horizontal cohomology
classes, and that yields computational effectivity. A natural twist of the Demailly
tower is introduced and a recursive formula for the total Segre class at k-th level
is obtained. Then, by interpreting single Segre classes as coefficients, an iterated
residue formula is derived.
Résumé. — Le but de ce travail est de fournir une formule d’intégration le

long des fibres de la tour de Demailly, évitant l’élimination pas-à-pas des classes
de cohomologie horizontales, et permettant des calculs effectifs. Une modification
naturelle de la tour de Demailly est introduite et une formule récursive pour la
classe de Segre totale au niveau k est obtenue. Ensuite, l’interprétation des classes
de Segre individuelles comme des coefficients mêne à une formule de résidus itérés.

1. Introduction

Let X be a complex manifold and let D be a divisor on X with normal
crossings, that is D =

∑
Di, where the components Di are smooth irre-

ducible divisors that meet transversally. For such a pair
(
X,D

)
, one denotes

by TX
(
− logD

)
the logarithmic tangent bundle of X along D ([19]).

Given a subbundle:

V ⊂ TX(− logD) ⊂ TX
of the logarithmic tangent bundle, one constructs ([5, 7]), for any fixed
order κ ∈ N, the logarithmic Demailly tower of projectivized bundles:(

Xκ, Dκ, Vκ
)
→
(
Xκ−1, Dκ−1, Vκ−1

)
→ . . .

. . .→
(
X1, D1, V1)→

(
X0, D0, V0) :=

(
X,D, V

)
,

Keywords:Demailly tower of logarithmic directed manifold, Gysin homomorphism, Segre
classes, iterated Laurent series.
Math. classification: 14C17, 32Q45, 14Q20.



30 Lionel DARONDEAU

having the main property that every holomorphic map g : C→ X \D lifts
as maps:

g[i] : C→ Xi \Di (i=0,1,...,κ),

which depends only on the corresponding i-jet of g. Later on in Section §2,
we will describe precisely this construction, central here.
For any two integers j, k ∈ 0, 1, . . . , κ, the composition of the projec-

tions πi : Xi → Xi−1 yields a natural projection from the j-th level of the
Demailly tower to the lower k-th level:

πj,k := πk+1 ◦ · · · ◦ πj : Xj → Xk.

The Demailly tower is of great importance in the study of the algebraic
degeneracy of entire curves on X \D (cf. the enlightening surveys [11, 21]).
A first step towards the proof of algebraic degeneracy of entire curves is
to prove the existence of a non zero polynomial P on X such that every
non constant entire curve g : C→ X \D satisfies the algebraic differential
equation:

Pg(t)
(
g′(t), g′′(t), . . . , g(κ)(t)

)
= 0, for all t ∈ C.

Being by definition a projective vector bundle, the manifold Xi comes
naturally equipped with a tautological line bundle, OXi(−1), the multiples
of which are usually denoted by OXi(m) := (OXi(−1)∨)⊗m. The direct
image:

O (Eκ,m(V0)?(logD0)) := (πκ,0)?OXκ(m)
is the sheaf of sections of a holomorphic bundle Eκ,m(V0)?(logD0), called
the Demailly-Semple bundle of jet differentials, and a fundamental vanish-
ing theorem ([5, 7]) states that for every global section:

P ∈ H0(Xκ,OXκ(m)⊗ π?κ,0A∨
)
' H0(X,Eκ,m(V0)?(logD0)⊗A∨

)
,

with values in the dual A∨ of an ample line bundle A → X, one has as
desired, for any κ-jet (g′, g′′, . . . , g(κ)) of non constant entire map g : C →
X \D:

Pg(t)
(
g′(t), g′′(t), . . . , g(κ)(t)

)
= 0, for all t ∈ C.

One has thus to ensure the existence of global sections of the line bundle
OXκ(m)⊗ π?κ,0A∨, possibly with m� 1.

One approach, with Schur bundles ([5]), consists in bounding positive
even cohomology groups H2i in order to use the Riemann-Roch theorem.
In [22], in dimension 3, the author is able to bound the dimension of H2 by
use of the famous algebraic Morse inequalities ([5, 23]). Later in [17], the
case of arbitrary dimension is completed, for high order jet differentials.
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FIBER INTEGRATION ON THE DEMAILLY TOWER 31

With a different approach, in [6] the case of arbitrary dimension is com-
pleted by use of a stronger version of algebraic Morse inequalities.

Another approach, developed in various contexts ([1, 3, 4, 8, 9, 10]),
consists in applying the holomorphic Morse inequalities in order to prove
the existence of sections of a certain more tractable subbundle of the bun-
dle of jet differentials. One is led to establish the positivity of a certain
intersection number on the κ-th level of the Demailly tower:

I =
∫
Xκ

f
(
c1
(
π?κ,1OX1

(1)
)
, . . . , c1

(
π?κ,κ−1OXκ−1

(1)
)
, c1
(
OXκ(1)

))
,

where f is a polynomial of large degree:

deg(f) = n+ κ (rk P (V )) = dim(Xκ),

in the first Chern classes c1
(
π?κ,iOXi(1)

)
.

When computing this intersection number, the standard strategy is to
integrate along the fibers of the projections πi,i−1 : Xi → Xi−1, until one
obtains an intersection product on the basis X0, where the intersection of
cohomology classes becomes simpler.
In [10], the authors use step-by-step elimination of Chern classes, and are

able to disentangle the complex intrication between horizontal and vertical
cohomology classes by a technical tour de force. These precise computations
yield effectivity.

In [3], the author makes a clever use of Segre classes in order to avoid a
large part of the computations, but on the other hand, effectivity cannot
be reached.
In [1], the author uses equivariant geometry in order to prove a residue

formula in several variables, that avoids step-by-step elimination and yields
effectivity.

In the present paper, we combine ideas coming from these authors, in
order to prove a similar residue formula in several variables, that is valid
in a versatile geometric context, since it holds in any situation where the
Demailly tower appears, cf. e.g. [18, 3]. Our proof borrows from [3] the
technical simplification of the use of Segre classes, it yields computational
effectivity as in [10], and it is in the very spirit of the formula of [1].
To enter into the details, by the Leray-Hirsch theorem ([13]), the coho-

mology ring H•
(
Xκ

)
of Xκ is the free module generated by the first Chern

classes c1
(
π?κ,iOXi(−1)

)
over the cohomology ring H•

(
X0
)
of the basis

X0, but the implementation of the computation in [4] suggests to naturally
consider a different basis for the vertical cohomology by introducing the
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32 Lionel DARONDEAU

line bundles:

Li := OXi(−1)⊗ π?i,i−1OXi−1
(−1)⊗ · · · ⊗ π?i,1OX0

(−1) (i=1,...,κ).

We will use the notation vi for the first Chern class of the dual of this line
bundle Li (dropping the pullbacks):

vi := c1
(
L∨i
)

= c1
(
OXi(1)

)
+ · · ·+ c1

(
OX1

(1)
)

(i=1,...,κ).

Note that this formula looks like a plain change of variables having in-
verse:

c1
(
OXi(1)

)
= vi − vi−1 (i=2,...,κ),

thus, clearly, the polynomial f appearing in the intersection product I
above has also a polynomial expression in terms of v1, . . . , vκ. We will
shortly provide a formula in order to integrate a polynomial under this
new form, still denoted f .
Let K be a field. A multivariate formal series in κ variables with coeffi-

cients in K is a collection of coefficients in K, indexed by Zκ:

Ψ : Zκ → K.

The space of formal series is naturally a K-vector space.
In analogy with polynomials, it is usual to denote, without convergence

consideration:

Ψ(t1, . . . , tκ) :=
∑

i1,...,iκ∈Z
Ψ(i1, . . . , iκ) t1i1 · · · tκiκ ,

hence, in order to avoid confusion, we will write:[
ti11 · · · tiκκ

](
Ψ(t1, . . . , tκ)

)
:= Ψ(i1, . . . , iκ),

to extract the coefficient indexed by i1, . . . , iκ, that is the coefficient of the
monomial ti11 · · · tiκκ in the expansion of Ψ(t1, . . . , tκ). The support of the
formal series Ψ is the subset of indices at which Ψ is non zero:

supp(Ψ) :=
{
i ∈ Zκ : [ti11 · · · tiκκ ]

(
Ψ
)
6= 0
}
.

One defines the Cauchy product Ψ1Ψ2 of two formal power series:

(1.1) Ψ1Ψ2 : (i1, . . . , iκ) 7→
∑
j+k=i

[tj1
1 · · · tjκκ ]

(
Ψ1
)

[tk1
1 · · · tkκκ ]

(
Ψ2
)
,

whenever the displayed sum is a finite sum for each κ-tuple:

i := i1, . . . , iκ.

For a fixed partial ordering on Zκ, when considering only the series having
well ordered support, the Cauchy product of two such series is always mean-
ingful, since the computation of the coefficient of each monomial involves
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FIBER INTEGRATION ON THE DEMAILLY TOWER 33

only finitely many terms. Moreover, for each choice of partial ordering, the
set of formal series having well ordered support, equipped with the Cauchy
product, forms a field ([20, Theorem 13.2.11]).
We give two examples of such fields. A multivariate Laurent series is

a multivariate formal series, the support of which is well ordered for the
standard product order on Zκ. An iterated Laurent series is a multivariate
formal series, the support of which is well ordered for the lexicographic
order on Zκ. The field of iterated Laurent series is an extension of the field
of multivariate Laurent series.

After several Laurent expansions at the origin, any rational function be-
comes an iterated Laurent series (but not necessarily a multivariate Laurent
series), as we will explain in more details later in §3.

We come back to the subbundle V = V0 ⊂ TX0

(
− logD0

)
. The total

Segre class of this bundle V0 → X0:

s•(V0) = 1 + s1(V0) + s2(V0) + · · ·+ sdim(X0)(V0)

is the inverse of the total Chern class of V0 in H•(X0). This notion is
strongly related to integration along the fibers of a projective vector bundle
([12]). We will be more explicit about this relation below in §3.
We are now in position to state the main result of this work. Recall for

i = 1, . . . , κ the notation vi := c1(L∨i ), set:

r := rk P (V ) = rk V − 1,

and introduce the (finite) generating series:

su(V0) = 1 + u s1(V0) + u2 s2(V0) + · · ·+ udim(X0) sdim(X0)(V0).

Main result. — For any polynomial:

f ∈ H•(X0, V0)[t1, . . . , tκ],

in κ variables t1, . . . , tκ, with coefficients in the cohomology ring
H•(X0, V0), the intersection number:

I :=
∫
Xκ

f(v1, . . . , vκ)

is equal to the Cauchy product coefficient:

I =
[
tr1 · · · trκ

](
Φκ
(
t1, . . . , tκ

)
I(t1, . . . , tκ)

)
,

where Φκ(t1, . . . , tκ) is the universal rational function:

Φκ(t1, . . . , tκ) =
∏

16i<j6κ

tj − ti
tj − 2 ti

∏
26i<j6κ

tj − 2 ti
tj − 2 ti + ti−1

,

TOME 66 (2016), FASCICULE 1



34 Lionel DARONDEAU

and where I(t1, . . . , tκ) is the multivariate Laurent polynomial involving
only explicit data of the base manifold:

I(t1, . . . , tκ) =
∫
X0

f(t1, . . . , tκ) s1/t1(V0) · · · s1/tκ(V0).

Concretely, the computation of this intersection number I, on the κ-th
level Xκ, can be brought down to the basis X0 as follows:

Step 1a. — Compute on the basis X0 the intersection number with
parameters t1, . . . , tκ:

I(t1, . . . , tκ) =
∫
X0

f(t1, . . . , tκ) s1/t1(V0) · · · s1/tκ(V0),

and obtain a multivariate Laurent polynomial in t1, . . . , tκ over Q.

Step 1b. — Expand the universal rational function Φκ(t1, . . . , tκ) suc-
cessively with respect to t1, t2, . . . up to tκ. Obtain, not a multivariate Lau-
rent series, but what has been called an iterated Laurent series, similarly
denoted by Φκ(t1, . . . , tκ) – notice the slanted Φ.

Step 2. — Compute the Cauchy product I(t1, . . . , tκ)Φκ(t1, . . . , tκ) of
the multivariate Laurent polynomial I(t1, . . . , tκ) and of the iterated Lau-
rent series Φκ(t1, . . . , tκ) in the field of iterated Laurent series over Q.
Lastly, extract the coefficient of the monomial tr1 · · · trκ in the obtained mul-
tivariate formal series, and receive the sought element I ∈ Q.

Obstacles and forthcoming results

Really computing I proves to be quite delicate in practice. The first
effective result in any dimension towards the Green-Griffiths conjecture
was obtained in 2010 by Diverio, Merker and Rousseau ([10]), using step-
by-step algebraic elimination, for entire curves C→ Xd ⊂ Pn+1 with values
in generic hypersurfacesXd of degree d in Pn+1, with an estimated sufficient
lower bound:

d > 2n
5
.

Some time after, in [1], Gergely Bérczi made a substantial progress by
replacing the elimination step of [10] by an iterated residue formula, and
he reached the lower bound:

d > n8n.

Using our main result, the difficulty is that in general, Step 1b does not
yield a single iterated Laurent series, but produces an involved product of
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FIBER INTEGRATION ON THE DEMAILLY TOWER 35

several iterated Laurent series. Then, it is very difficult to determine even
the sign of any individual coefficient of Φκ(t1, . . . , tκ), because this amounts
to disentangle the large product:∏

26i6j6κ

tj − 2 ti
tj − 2 ti + ti−1

=
∏

26i6j6κ

(
1−

∞∑
p=0

ti−1(2 ti − ti−1)p

tp+1
j

)
.

On the other hand, it is relatively easy to control the absolute value of
these coefficients, using a convergent majorant series with positive coeffi-
cients, whence suppressing the problem of signs:

|coeff|

 ∏
26i6j6κ

tj − 2 ti
tj − 2 ti + ti−1


6 coeff

 ∏
26i6j6κ

tj − 2 ti
tj − 2 ti − ti−1


= coeff

 ∏
26i6j6κ

(
1 +

∞∑
p=0

ti−1(2 ti + ti−1)p

tp+1
j

)
– notice that +ti−1 in the denominator becomes −ti−1. And this allows us
to use (plainly) the triangle inequality in [4], to attain an effective lower
bound on the degree d of generic smooth hypersurfaces Xd ⊂ Pn such that
all entire curves C→ Pn \Xd are algebraically degenerate:

d > (5n)2 nn,

a lower bound which also holds for curves with values in a generic hyper-
surface Xd ⊂ Pn+1.

A better understanding of the combinatorics of the series Φκ would al-
low to improve in a more subtle way this effective lower bound. It seems
reasonable to reach an exponential bound:

d
?
> (constant)n.
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2. Demailly tower of (logarithmic) directed manifolds

A directed manifold is defined to be a couple (X,V ) whereX is a complex
manifold, equipped with a (not necessary integrable) holomorphic subbun-
dle V ⊂ TX of its holomorphic tangent bundle. There is a natural general-
ization of this definition in the logarithmic setting. A log-directed manifold
is by definition a triple (X,D, V ) where (X,D) is a log-manifold and the
distribution V ⊂ TX(− logD) is a (not necessary integrable) subbundle of
the logarithmic tangent bundle.
Given a log-directed manifold (X,D, V ), following Dethloff and Lu [7],

we construct the Demailly tower of projectivized bundles (Xi, Di, Vi) on
X by induction on i > 0. This construction is formally the same as the
construction [5] of the Demailly tower in the so-called compact case, i.e.
where there is no divisor D. The only slight modification to keep in mind
in the genuine logarithmic setting is that V is a holomorphic subbundle of
the logarithmic tangent bundle TX

(
− logD

)
.

Projectivization of a log directed manifold ([5, 7])

Recall that for a vector bundle E → X on a smooth manifold X with
projective bundle of lines π : P (E)→ X , the tautological line bundle:

OP (E)(−1)→ P (E)

is defined as the subbundle of the pullback bundle π?E → P (E) with trivial
fiber.
The dual line bundle OP (E)(1) := OP (E)(−1)∨ fits into the following

Euler exact sequence ([12, B.5.8]):

0→ OP (E) → π?E ⊗OP (E)(1)→ Tπ → 0,

where Tπ := ker(π?) stands for the relative tangent bundle of P (E) over
X, that itself fits into the following short exact sequence:

0→ Tπ ↪→ TP (E)
π?−→ π?TX → 0.
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We now recall the inductive step
(
X ′, V ′, D′

) π→
(
X,V,D

)
of the con-

struction of the Demailly tower. Keep in mind that V is a subbundle of
TX(− logD) and that V ′ has to be a subbundle of the logarithmic tangent
bundle TX′(− logD′).

Firstly, for X ′ take the total space P (V ) of the projective bundle of lines
of V :

X ′ := P (V ) π−→ X,

and in order to make π a log-morphism set:

D′ := π-1(D) ⊂ X ′.

Next, by definition of the relative tangent bundle Tπ := ker(π?) of the
log-morphism π one has the following short exact sequence:

0→ Tπ ↪→ TX′(− logD′) π?−→ π?TX(− logD)→ 0,

and since by assumption V ⊂ TX(− logD), the tautological line bundle of
X ′ = P (V ) is a subbundle of the bundle in the right-hand slot:

OX′(−1) ⊂ π?V ⊂ π?TX(− logD),

whence one can define a subbundle V ′ ⊂ TX′(− logD′) by taking:

V ′ := (π?)-1OX′(−1).

The only thing to verify in order to get a log directed manifold is that V ′ is
a holomorphic subbundle of TX′(− logD′). Since (π?)-1 has maximal rank
everywhere, as it is a bundle projection, this is the case ([7]).
By its very definition V ′ then fits into the following short exact sequence:

0→ Tπ ↪→ V ′
π?−→ OX′(−1)→ 0.

and thus the rank of V ′ is the same as the rank of V , because:

rk(V ′) = rk(P (V )) + 1 = rk(V )− 1 + 1.

Starting from a bundle V0 having rank r+ 1, by iterating the construction
κ times, one thus gets a tower of projectivized bundles(

Xκ, Vκ, Dκ

) πκ−→ · · · π2−→
(
X1, V1, D1

) π1−→
(
X0, V0, D0

)
with rk Vi = r + 1 and ni := dim Xi = dim(X0) + i

(
rkP (V0)

)
= n+ i r.
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38 Lionel DARONDEAU

Existence of global jet differentials

The fibers of the Demailly-Semple bundle of jet differentials Eκ,m(V0)?
(logD0) carries much complexity ([15, 16]). In order to prove the existence
of global jet differentials of order κ = dim(X), one is led to consider a much
more tractable line bundle, constructed in [5, 6.13] as a linear combination
with non negative integer coefficients (a1, . . . , aκ):

OXκ(a1, a2, . . . , aκ) := (πκ,1)?OX1
(a1)⊗ (πκ,2)?OX2

(a2)⊗ · · · ⊗ OXk(aκ).

If a1 + . . .+ aκ = m, the direct image (πκ,0)?OXκ(a1, . . . , aκ) may be seen
as a subbundle of the Demailly-Semple bundle of jet differentials ([5, 7]).
For a suitable choice of the parameters a1, . . . , aκ, the line bundle

OXκ(a1, . . . , aκ) has some positivity properties, that can be used together
with the following Demailly-Trapani algebraic Morse inequalities ([23, 5])
in order to establish the existence of global jet differentials.

Theorem (Weak algebraic Morse inequalities). — For any holomorphic
line bundle L on a N -dimensional compact manifold X, that can be written
as the difference L = F ⊗G∨ of two nef line bundles F and G, one has:

h0(X,L⊗k) > kN (
FN
)
− k

(
FN−1 ·G

)
N ! − o(kN ).

For a choice of a1, . . . , aκ ∈ Nκ such that:

(2.1) aκ−1 > 2 aκ > 0 ; ai > 3 ai+1 (i = 1, . . . , κ− 2),

the line bundle OXκ(a1, . . . , aκ) is relatively ample along the fibers of Xκ

over X (cf. [5]). It hence suffices to multiply it by a sufficiently positive
power π?κ,0A⊗l of a given ample line bundle A → X, in order to get an
ample (hence nef) line bundle (cf. [14]). On the other hand π?κ,0A

⊗l+1 is
nef for it is the pullback of a nef line bundle.
It gives an expression of the line bundle OXκ(a1, . . . , aκ)⊗ (πκ,0)?A∨ as

the difference F ⊗G∨ of two nef line bundles:

F := OXκ(a1, . . . , aκ)⊗ (πκ,0)?A⊗l and G := (πκ,0)?A⊗l+1

In order to prove the existence of global sections:

P ∈ H0
(
Xκ,OXκ(a1, . . . , aκ)⊗ (πκ,0)?A∨

)
,

it hence remains to show the positivity of the following intersection number:

I :=
∫
Xκ

c1(F )nκ − nκ c1(F )nκ−1c1(G) (nκ=dim Xκ).

We will give a formula for computing such an intersection product.
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FIBER INTEGRATION ON THE DEMAILLY TOWER 39

3. Fiber Integration on the Demailly tower

It is convenient to bring down the computation to the basis and we
will now provide a formula for this purpose. Noteworthy, the proof of this
formula involves iterated Laurent series, in the same spirit as the residue
formula of Berczi [1, 2]. However, we will not use equivariant geometry like
this author, but only basic lemmas of intersection theory, more precisely
some of the properties of Segre classes exposed in the book of Fulton [12,
Chap. 3]. We now first briefly recall these properties.

Segre classes on the Demailly tower

To go down one level, from Xi+1 = P (Vi) to Xi, we will use the very
definition of the j-th Segre class of a vector bundle E → X (having rank
r + 1), namely the fiber integration formula:

(3.1)
∫
X

sj(E)α =
∫
P (E)

uj+r p?α (j>0, α∈H•X),

where:
p : P (E)→ X and u := c1

(
OP (E)(−1)∨

)
.

We want to apply this formula in order to eliminate the powers of the first
Chern classes v1, . . . , vκ of the vector bundles Li → Xi. We will proceed
by induction.
It is well known that the total Segre class of a vector bundle is the same

as the inverse of its total Chern class. Thus, the total Segre class enjoys
the Whitney formula.

Because we will obtain a result that is independent of the geometric
context, we will deliberately be ambiguous about it. The only property of
the Demailly construction that we use in what follows is the existence of
the two short exact sequences:

0→ Tπ → V ′ → OX′(−1)→ 0

and:
0→ OX′ → π?V ⊗OX′(1)→ Tπ → 0,

where (X ′, V ′) π→ (X,V ) is the inductive step of the Demailly construction.
Now, consider the following observation: the twist by a line bundle does

not change the projective bundle of lines of V ′, but only the transition
functions. Moreover, one can twist short exact sequences by line bundles.
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40 Lionel DARONDEAU

We can hence chose a line bundle L′ onX ′ that makes the induction more
easy. We will twist both short exact sequences by the same line bundle,
because we do not want Tπ to appear in the final formula below. Also, we
do not want anymore the central term of the second short exact sequence
to be a product of line bundles with different base spaces X and X ′ but
rather want it to be the pullback of a single bundle on the lower level X,
that is:

π?V ⊗OX′(1)⊗ L′ = π?
(
V ⊗ L

)
,

for a certain L → X (in practice given by the preceding induction steps).
Consequently, we have to take:

(3.2) L′ := OX′(−1)⊗ π?L = OP (V⊗L)(−1).

Notice that accordingly the term OX′(−1) can now be replaced by
(
L′ ⊗

π?L∨
)
in the first exact sequence.

Once twisted by L′, the above two short exact sequences become:{
0 → Tπ ⊗ L′ → V ′ ⊗ L′ →

(
L′ ⊗ π?L∨

)
⊗ L′ → 0

0 → L′ → π?
(
V ⊗ L

)
→ Tπ ⊗ L′ → 0 .

By the Whitney formula, the first line yields:

s(V ′ ⊗ L′) = s(Tπ ⊗ L′) s
(
(L′)⊗2 ⊗ π?L∨

)
,

while the second line yields:

π?s
(
V ⊗ L

)
= s
(
Tπ ⊗ L′

)
s
(
L′
)
.

Thus, we can eliminate Tπ, as it was our intention, in order to get the
induction formula:

s
(
V ′ ⊗ L′

)
=
s
(
(L′)⊗2 ⊗ π?L∨

)
s
(
L′
) π?s

(
V ⊗ L

)
.

Now, for a line bundle L→ X, the total Segre class is the finite sum:

s•(L) =
(
1− c1(L∨)

)-1 = 1 + c1(L∨) + c1(L∨)2 + · · ·+ c1(L∨)dim(X)

– we use the first Chern class of the dual in order to have positive signs.
Let v := c1

(
L∨
)
and v′ := c1

(
(L′)∨

)
. We get the induction formula:

(3.3) s
(
V ′ ⊗ L′

)
= ϕ

(
v′, v

)
π?s
(
V ⊗ L

)
,

where ϕ(x, y) is the truncated double Taylor expansion of the rational
function (1− x)

(
1− 2x+ y

)−1:

ϕ
(
x, y
)

:= (1− x)
nκ−1∑
k=0

(2x− y)k.
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Considering (3.2), we construct the ad hoc sequence of line bundles Li →
Xi by taking first the tautological line bundle L1 := OX1

(−1) of V0 and
then the tautological line bundle of the twisted vector bundle Vi−1⊗Li−1:

Li := OXi(−1)⊗ (πi)?Li−1 = OP (Vi−1⊗Li−1)(−1) (i=2,...,κ).

We will denote by vi the first Chern class of the dual of this line bundle:

vi := c1
(
L∨i
)

= c1
(
OP (Vi−1⊗Li−1)(1)

)
.

Then, by (3.3), on has the following inductive formulas, where, for simplic-
ity, we omit the pullbacks:

s
(
V1 ⊗ L1

)
= ϕ(vi, 0) s

(
V0
)

and s
(
Vi ⊗ Li

)
= ϕ(vi, vi−1) s

(
Vi−1 ⊗ Li−1

)
, (i=2,...,κ).

Notice that we can reformulate the positivity property (2.1) by using the
more explicit expression of the line bundles Li:

Li = OXi(−1)⊗ · · · ⊗ (πi,2)?OX2
(−1)⊗ (πi,1)?OX1

(−1) (i=1,...,κ).

and the inversion of these formulas

OXi(1) = L∨i ⊗ Li−1;

in analogy with OXκ(a1, . . . , aκ) = a1OX1
(−1)∨+ · · ·+aκOXκ(−1)∨ con-

sider, a linear combination:

L(a1, . . . , aκ) := a1 L
∨
1 + · · ·+ aκ L

∨
κ

of the line bundles L∨i , with non negative coefficients ai, such that:

a1 + 2 a2 + · · ·+ κ aκ = m ∈ N,

then, the line bundle π?κ,0L(a1, . . . , aκ) may be seen as a certain subbundle
of Eκ,mV ?0 (logD0) and if:

aκ−1 > aκ > 1 ; ai > 2(ai+1 + · · ·+ aκ) (i6κ−2).

the line bundle L(a1, . . . , aκ) is relatively ample along the fibers of Xκ →
X0.

Proposition 3.4. — For any polynomial in the first Chern classes
v1, . . . , vi+1 having coefficients in (the pullback of) the cohomology of X0:

f ∈ H•
(
X0
)
[v1, . . . , vi, vi+1],

the following formula of integration along the fibers of Xi+1 → Xi holds:∫
Xi+1

f(v1, . . . , vi, vi+1) =
[
tri+1

](∫
Xi

f(v1, . . . , vi, ti+1) s1/ti+1

(
Vi ⊗ Li

))
.
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Proof. — Firstly, by the Leray-Hirsch theorem:

H•
(
X0
)
[v1, . . . , vi, vi+1] = H•

(
Xi+1

)
Thus, f has values in the cohomology ring of Xi+1.
The polynomial f is of the form:

f(v1, . . . , vi, vi+1) =
ni+1∑
j=0

(vi+1)j (πi+1)?fj(v1, . . . , vi).

By linearity, the formula will hold for any such sum, if it holds for every
monomial:

vji+1 (πi+1)?fj(v1, . . . , vi).

Recall that the line bundles Li are constructed by the inductive formula:

Li+1 = OP (Vi)(−1)⊗ π?i+1Li = OP (Vi⊗Li)(−1).

Thus, it can be thought of as the tautological line bundle of the projective
bundle:

P (Vi ⊗ Li) ' P (Vi) =: Xi+1.

Then the above fiber integration formula (3.1) yields at once:

(∗)
∫
Xi+1

vji+1 (πi+1)?fj(v1, . . . , vi) =
∫
Xi

sj−r
(
Vi ⊗ Li

)
fj(v1, . . . , vi).

In particular, this integral is zero for indices j smaller than r.
The problem is now to obtain the individual Segre classes from the total

Segre class. In that aim, we will use the formalism of generating functions.
Recall that, in analogy with Chern polynomial, for a vector bundle E →
X over a N dimensional manifold X, we have introduced the generating
function su(E) of the Segre classes of E, that is:

su(E) := s0(E) + u s1(E) + u2 s2(E) + · · ·+ uN sN (E).

Then, by taking t = 1/u, we obtain a Laurent polynomial:

s1/t(E) := s0(E)
t0

+ s1(E)
t1

+ s2(E)
t2

+ · · ·+ sN (E)
tN

,

in which the
(
j− r

)
-th Segre class involved in the fiber integration appears

as the coefficient:

sj−r(E) =
[
1/tj−r

]
s1/t(E) =

[
tr
](
tj s1/t(E)

)
.
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Therefore, by replacing in the integration formula (∗):∫
Xi+1

vji+1 (πi+1)?fj(v1, . . . , vi)

=
∫
Xi

[
ti+1

r
](
tji+1 s1/ti+1

(
Vi ⊗ Li

))
fj(v1, . . . , vi).

=
[
ti+1

r
](∫

Xi

tji+1 fj(vi, . . . , v1) s1/ti+1

(
Vi ⊗ Li

))
.

Notice that inside of the parenthesis there is the product of a monomial
by a Laurent polynomial. Thus, only a finite number of terms are involved
and there is no objection to switching the integral and the coefficient ex-
traction.

The obtained formula is exactly the sought formula for the considered
monomial:

vji+1 (πi+1)?fj(v1, . . . , vi),
and this ends the proof. �

Iteration of the integration formula

In order to iterate the fiber integration, we introduce the following for-
malism: for i = 0, 1, . . . , κ, we denote by vt i the κ-tuple obtained from:

v := (v1, . . . , vκ)

by replacing the last i components vκ−i+1, . . . , vκ by the corresponding
parameters tκ−i+1, . . . , tκ, i.e.:

vt i := (v1, . . . , vκ−i, tκ−i+1, . . . , tκ) (i=0,1,...,κ).

With this notation the fiber integration formula (3.4) just above yields
directly, that for any polynomial in the first Chern classes v1, . . . , vi+1 hav-
ing coefficients in (the pullback of) the cohomology of X0, being a Laurent
polynomial in the formal parameters ti+2, . . . , tκ:

f ∈ H•
(
X0
)
[v1, . . . , vi, vi+1][ti+2, t

-1
i+2, . . . , tκ, t

-1
κ ],

the following formula of integration along the fibers of Xi+1 → Xi holds:

(3.5)
∫
Xi

f
(
vtκ−i

)
=
[
tri
] ∫

Xi−1

f
(
vtκ−i+1

)
s1/ti

(
Vi−1 ⊗ Li−1

)
.

Notice that in the above formula the form of the polynomial appearing
in the integrand:

f
(
vtκ−i+1

)
s1/ti

(
Vi−1 ⊗ Li−1

)
∈ H•

(
X0
)
[v1, . . . , vi][ti+1, t

-1
i+1, . . . , tκ, t

-1
κ ],
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allows to iterate this formula in order to integrate along the fibers of
Xi−1 → Xi−2. For short, we denote the appearing polynomial rings by:

Λ[vtκ−i] := H•
(
X0
)
[v1, . . . , vi][ti+1, t

-1
i+1, . . . , tκ, t

-1
κ ] (i=0,1,...,κ).

One has thus:

Λ[vt0] = H•
(
X0
)
[v] = H•

(
Xκ

)
and Λ[vtκ] = H•

(
X0
)
[t, t-1].

We have first to investigate the dependence with respect to vi of the ap-
pearing power series s1/ti+1

(
Vi⊗Li

)
. The induction formula (3.1) precisely

provides us with this information. Thanks to it, we can split the power
series s1/t

(
Vi ⊗ Li

)
in two parts:

s1/tj
(
Vi ⊗ Li

)
= ϕ

(
vi
tj
,
vi−1

tj

)
︸ ︷︷ ︸
∈Λ[vt

κ−i]

s1/tj
(
Vi−1 ⊗ Li−1

)
︸ ︷︷ ︸

∈Λ[vt
κ−i+1]

,

or for i = 1:

s1/tj
(
V1 ⊗ L1

)
= ϕ

(
v1

tj
, 0
)

︸ ︷︷ ︸
∈Λ[vt

κ−1]

s1/tj
(
V0 ⊗ L0

)
︸ ︷︷ ︸
∈H•(X0)[t,t-1]

,

the first of which depends on vi whereas the second does not.
Write for short:

Φk,l(t1, . . . , tκ) := ϕ

(
tk
tl
,
tk−1

tl

)
(k=2,...,κ−1, k+16l6κ),

and:
Φ1,l(t1, . . . , tκ) := ϕ

(
t1
tl
, 0
)

(26l6κ),

in such way that, for any two positive integers k < l:

(3.6) s1/tl
(
Vk ⊗ Lk

)
= Φk,l

(
vtk
)
s1/tl

(
Vk−1 ⊗ Lk−1

)
(16k<l6κ).

Let Φi be the product of the terms in the i last lines of the array:

1 Φ1,2 Φ1,κ

Φ2,3 Φ2,κ

Φκ−1,κ

1 1




,

that is the product of
(
i(i− 1)/2

)
terms:

Φi(t1, . . . , tκ) :=
∏

κ−i+16k<l6κ
Φk,l(t1, . . . , tκ).
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As an example, Φ1(t1, . . . , tκ) = 1.
The following lemma will be used in order to isolate the variable vκ−i,

that is to eliminate after the i-th step of the fiber integration.

Lemma 3.7 (Isolation of vκ−i). — For any i = 0, 1, . . . , κ − 1 one has
the following relation between Φi and Φi+1:

Φi
(
vt i
) κ∏
j=κ−i+1

s1/tj
(
Vκ−i ⊗ Lκ−i

)
= Φi+1

(
vt i
) κ∏
j=κ−i+1

s1/tj
(
Vκ−(i+1) ⊗ Lκ−(i+1)

)
.

Proof. — Recall the induction formula displayed above:
s1/tj

(
Vi ⊗ Li

)
s1/tj

(
Vi−1 ⊗ Li−1

) = Φi,j
(
vtκ−i

)
.

Thus, one has:∏κ
j=κ−i+1 s1/tj

(
Vκ−i ⊗ Lκ−i

)∏κ
j=κ−i+1 s1/tj

(
Vκ−(i+1) ⊗ Lκ−(i+1)

) =
κ∏

j=κ−i+1
Φκ−i,j

(
vtκ−i

)
.

Now, by definition of Φi and Φi+1:

Φi+1

Φi

(
vtκ−i

)
=

∏
κ−i6k<l6κ Φk,l∏
κ−i+16k<l6κ Φk,l

(
vtκ−i

)
=

κ∏
l=κ−i+1

Φκ−i,l
(
vtκ−i

)
.

Hence, we get the announced result. �

Notice that in the right hand side of the obtained formula, only the first
factor depends on vκ−i.
This result is given by anticipation of the proof of main theorem (3.8).

However we can already notice that, e.g.:

Φ1
(
vt 1
) κ∏
j=κ−1+1

s1/tj
(
Vκ−i ⊗ Lκ−i

)
= s1/tκ

(
Vκ−1 ⊗ Lκ−1

)
,

is the term appearing in the first step of the fiber integration.

Theorem 3.8 (Fiber Integration on the Demailly tower). — Any poly-
nomial:

f ∈ H•(X0, V0)[t1, . . . , tκ],
in κ variables t1, . . . , tκ, with coefficients in the cohomology ring
H•(X0, V0), yields a cohomology class:

f
(
v
)

= f
(
v1, . . . , vκ

)
∈ H•

(
Xκ

)
,
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that can be integrated along the fibers of the projective bundle Xκ → X0
according to the formula:∫

Xκ

f
(
v
)

=
[
tr1 · · · trκ

](
Φκ
(
t
) ∫

X0

f
(
t
)
s1/t1(V0) · · · s1/tκ(V0)

)
.

Proof. — We will prove by induction that for i = 0, 1, . . . , κ, one has:∫
Xκ

f
(
v
)

=
[
trκ−i+1 · · · trκ

] ∫
Xκ−i

fi
(
vt i
)
,

with:

fi
(
vt i
)

:= f
(
vt i
)
Φi
(
vt i
) κ∏
k=κ−i+1

s1/tk(Vκ−i ⊗ Lκ−i).

Then, for i = κ: ∫
Xκ

f
(
v
)

=
[
tr1 · · · trκ

] ∫
X0

fκ
(
t
)
,

with:

fκ
(
t
)

:= f
(
t
)
Φκ
(
t
) κ∏
k=1

s1/tk(V0 ⊗ L0).

That is the desired formula because L0 = OX0
.

For i = 0, this is tautological. Now, assume that the formula holds for
the index i, that is to say:

(∗)
∫
Xκ

f
(
v
)

=
[
trκ−i+1 · · · trκ

] ∫
Xκ−i

fi
(
vt i
)
,

According to lemma (3.7), fi can also be written:

fi
(
vt i
)

= f
(
vt i
)
Φi+1

(
vt i
) κ∏
k=κ−i+1

s1/tk(Vκ−(i+1) ⊗ Lκ−(i+1)).︸ ︷︷ ︸
∈Λ[vti+1]

Now applying lemma (3.5):∫
Xκ−i

fi
(
vt i
)

=
[
trκ−i

] ∫
Xκ−i−1

fi
(
vt i+1

)
s1/tκ−i(Vκ−(i+1) ⊗ Lκ−(i+1)).

It remains to state that:

fi
(
vt i+1

)
s1/tκ−i(Vκ−(i+1) ⊗ Lκ−(i+1)) =

f
(
vt i+1

)
Φi+1

(
vt i+1

) κ∏
k=κ−i+1

s1/tk(Vκ−(i+1) ⊗ Lκ−(i+1))

s1/tκ−i(Vκ−(i+1) ⊗ Lκ−(i+1)).
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Here, we recognize the expression:

fi+1
(
vt i+1

)
= f

(
vt i+1

)
Φi+1

(
vt i+1

) κ∏
k=κ−i

s1/tk(Vκ−(i+1) ⊗ Lκ−(i+1)).

Thus, we can replace the integrand in order to get:∫
Xκ−i

fi
(
vt i
)

=
[
trκ−i

] ∫
Xκ−i−1

fi+1
(
vt i+1

)
.

Using the induction hypothesis (∗), one finally gets the desired formula, for
the index i+ 1:∫

Xκ

f
(
v
)

=
[
trκ−i+1 · · · trκ

] ∫
Xκ−i

fi
(
vt i
)

=
[
trκ−i · · · trκ

] ∫
Xκ−(i+1)

fi+1
(
vt i+1

)
.

This complete the proof. �

Laurent series expansion of rational functions

Before going further, we give now more details about the Laurent series
expansion mentioned above in the introduction (page 33).

In the univariate case, we will denote by K((t)) the space of Laurent
series. Equipped with the Cauchy product, it becomes a field. Indeed, the
following geometric series formula is valid in the ring of formal power series:

(1−X)-1 =
∑
i>0

Xi,

and it allows to define the formal inverse (for the Cauchy product) of any
Laurent series of the form:

Ψ =
∑
i>N

Ψi t
i

with initial coefficient ΨN 6= 0, as follows:

(3.9) Ψ -1 = 1
ΨN tN

∑
k>0

(
−
∑
j>1

ΨN+j

ΨN
tj
)k
,

because the computation of the coefficient of any power of t in the later
expression involves only a finite number of appearing k-th powers. The
result is indeed a Laurent series, since its support is visibly bounded from
below.
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A direct consequence is that any rational function enjoys a natural Lau-
rent expansion. Indeed, the support of a polynomial Q ∈ K[t], considered
as a formal series, is finite. Thus, it is naturally a Laurent series. Then, by
formula (3.9) above, we can construct a formal inverse of Q in the field of
Laurent series. Now, any rational function of the form:

P (t)
Q(t) = P (t)Q-1(t),

with also P ∈ R[t], can be expanded as a Laurent series: it suffices to use
the multiplication rule (1.1) in order to compute the product (in the field
of Laurent series) of the numerator P by the formal inverse "Q-1" obtained
after using the expansion rule (3.9). This yields an injective morphism of
fields:

Ψ0 : K(t) ↪→ K((t)),

that we call Laurent expansion of rational functions at the origin.
In the multivariate case, in order to unequivocally expand a rational

function of several variables t1, . . . , tκ under the form of a generalized Lau-
rent series, it is necessary to assign at first a total ordering to the variables
ti (consider the example of (t1 − t2)-1). Then, working step by step in the
univariate setting (taking account of the ordering of the variables), one
easily convinces oneself that the successive series expansions at zero yield
an injective morphism of fields:

Ψ0 : K(tκ)(tκ−1) . . . (t1) ↪→ K((tκ))((tκ−1)) . . . ((t1)),

that we call Laurent expansion of rational functions at the origin, under
the assumption t1 � · · · � tκ−1 � tκ � 1. The map Ψ0 is indeed injective
because its image contains only summable series, therefore its left inverse
is the successive summation for tκ, tκ−1 . . . , t1.

Here, the notation t1 � t2 � · · · � tκ � 1 express the idea that for two
integers k < k′ the variable tk is infinitely smaller than any (positive or
negative) power of the variable tk′ . To compute the iterated Laurent series
expansion of a rational function Q ∈ K(t1, . . . , tκ), we first expand Q at
the origin as a rational function of t1, formally considering any rational
expression made of constants of K, and variables t2, . . . , tκ as elements
of the field of coefficients. Then, when expanding the coefficients of the
resulting series, we forget t1 and we have: t2 � t3 � . . . tκ � 1. We iterate
the procedure until we get tκ � 1, that is the one-dimensional case.
Thus, an element of the ring:

K〈〈t1, . . . , tκ〉〉 := K((tκ))((tκ−1)) . . . ((t1)),
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should be seen as a Laurent series in t1 whose coefficients are Laurent series
in t2 whose coefficients are Laurent series in t3 and so on. . . Accordingly
such an element is called an iterated Laurent series.
It is a bigger space than the space of multivariate Laurent series. A

formal series Ψ is an element of K〈〈t1, . . . , tκ〉〉 if and only if its support is
well ordered for the lexicographic order. This condition is clearly weaker
than to be bounded from below for the standard product order on Zκ
(consider again the example of (t1 − t2)-1).
We can extend the coefficient extraction operator to the field of rational

functions K(t1, . . . , tκ) by using the injection Ψ0. For a rational function
Q ∈ K(t1, . . . , tκ), we always imply the assumption t1 � · · · � tκ � 1 and
we define the coefficient extraction operator:[

ti11 · · · tiκκ
](
Q
)

:=
[
ti11 · · · tiκκ

](
Ψ0(Q)

)
.

This convention in turn allows us to define the (Cauchy) product of a
rational function by an iterated Laurent series, by using the same formalism
as in (1.1).

Integration formula

We are now in position to state a more tractable version of formula (3.8):

Theorem 3.10 (Fiber Integration on the Demailly tower). — For any
polynomial:

f ∈ H•(X0, V0)[t1, . . . , tκ],

in κ variables t1, . . . , tκ, with coefficients in the cohomology ring
H•(X0, V0), having total degree at most nκ, the cohomology class:

f
(
v
)

= f
(
v1, . . . , vκ

)
∈ H•

(
Xκ

)
,

can be integrated along the fibers of the projective bundle Xκ → X0 ac-
cording to the formula:∫

Xκ

f
(
v
)

=
[
tr1 · · · trκ

](
Φκ
(
t
) ∫

X0

f
(
t
)
s1/t1(V0) · · · s1/tκ(V0)

)
,

where Φκ is the universal rational function:

Φκ(t1, . . . , tκ) =
∏

16i<j6κ

tj − ti
tj − 2 ti

∏
26i<j6κ

tj − 2 ti
tj − 2 ti + ti−1

.
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Proof. — The product Φκ can be reshaped as follows:

Φκ(t1, . . . , tκ) =
κ−1∏
j=2

tj − t1
tj − 2 t1︸ ︷︷ ︸

Φ1,j(t)

j−1∏
i=2

tj − ti
tj − 2 ti + ti−1︸ ︷︷ ︸

Φi,j(t)

.

For 1 6 i < j 6 κ− 1, let:

Ri,j(t) := Ψ0(Φi,j(t))− Φi,j(t).

By coming back to the definitions, it is immediate to see that these remain-
ders are:

R1,j(t) =
(

1− ti
tj

) ∑
k>nκ−1

(2ti)k

tkj

and Ri,j(t) =
(

1− ti
tj

) ∑
k>nκ−1

(2ti − ti−1)k

tkj
(26i<j6κ−1).

Noteworthy, the supports of these remainders satisfy:

suppRi,j ⊂
{

(i1, . . . , iκ) : ij < −nκ−1
}
∩
⋂
k>j

{
(i1, . . . , iκ) : ik = 0

}
.

One can write:

Ψ0(Φ(t)) =
∏

entries

1 Φ1,2 +R1,2 Φ1,κ +R1,κ

Φκ−1,κ +Rκ−1,κ

1 1




.

We clean inductively this array of the remainder in the k-th column. Let
arrayj be the array deduced from the above array by dropping the remain-
ders in the j last columns. We will show that:[
tr1 · · · trκ

](∏
arrayj I(t1, . . . , tκ)

)
=
[
tr1 · · · trκ

](∏
arrayj+1 I(t1, . . . , tκ)

)
where:

I(t1, . . . , tκ) :=
∫
X0

f(t1, . . . , tκ) s1/t1(V0) · · · s1/tκ(V0).

We generalize the notation I(t1, . . . , tκ) by setting:

I(t1, . . . , ti) :=
[
tri+1 · · · trκ]

(
I(t)

κ−1∏
k=i+1

k−1∏
j=1

Φj,k(t)
)

(i=0,1,...,κ).
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Then we claim (find the proof below):

supp I(t1, . . . , tκ−j) ⊂
{

(i1, . . . , iκ−j) : iκ−j 6 nκ
}
.

On the other hand, one is easily convinced that:∏
arrayj =

∏
arrayj+1 +Rj

κ−1∏
l=κ−j+1

l−1∏
k=1

Φk,l(t),

where Rj is a given series such that:

suppRj(t1, . . . , tκ−j) ⊂
{

(i1, . . . , iκ−j) : iκ−j < −nκ−1
}
.

It is now clear that the second part cannot contribute to the coefficient
of trκ−j in:

[trκ−j+1 · · · trκ]
(∏

arrayj I(t)
)
,

because the degree of tκ−j in the corresponding term:

[trκ−j+1 · · · trκ]
(
Rj(t1, . . . , tκ−j)

κ−1∏
l=κ−j+1

l−1∏
k=1

Φk,l(t) I(t)
)

= Rj(t1, . . . , tκ−j) I(t1, . . . , tκ−j)

is strictly less than −nκ−1 + nκ = r.
Consequently:[
trκ−j · · · trκ

](∏
arrayj I(t1, . . . , tκ)

)
=
[
trκ−j · · · trκ

](∏
arrayj+1 I(t1, . . . , tκ)

)
,

and by extraction of the coefficient of the monomial tr1 · · · trκ−j−1, as an-
nounced:[
tr1 · · · trκ

](∏
arrayj I(t1, . . . , tκ)

)
=
[
tr1 · · · trκ

](∏
arrayj+1 I(t1, . . . , tκ)

)
.

An induction finishes the proof because:

Ψ0(Φκ) =
∏

array0 and Φκ =
∏

arrayκ. �

We have added a lot of non contributive terms, however in practice ([4]),
the above reformulation of (3.8) is more efficient, because it takes account
of the convergence of the series at stake.

Finally, we prove our claim above in the proof, that:

supp I(t1, . . . , tκ−j) ⊂
{

(i1, . . . , iκ−j) : iκ−j 6 nκ
}
.

Actually we will be more precise and show that for j = 1, . . . , κ:

supp I(t1, . . . , tj) ⊂
{

(i1, . . . , ij) : ij 6 nj
}
.
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Proof. — In order to prove this statement, it is easier to work with gen-
uine polynomials, and not Laurent polynomials. An important remark is
that for any two integers k < l, the Laurent polynomial tnκ−1

l Φk,l(t) is in
fact a genuine polynomial, having degree nκ−1. Thus, we rather consider:

tnj I(t1, . . . , tj)

=
[
t
mj+1
j+1 · · · t

mκ−1
κ−1 tn+r

κ ]
((
tnj · · · tnκ I(t)

) κ−1∏
l=j+1

l−1∏
k=1

(
t
nκ−1
l Φk,l(t)

))
,

where ml = n+ r + (l − 1)(nκ−1).
The appearing polynomial in tj , tj+1, . . . , tκ has degree:

degtj ,...,tκ

((
tnj · · · tnκ I(t)

) κ−1∏
l=j+1

l−1∏
k=1

(
t
nκ−1
l Φk,l(t)

))

6 nκ + n+
κ−1∑
l=j+1

(ml − r) + n.

Extracting the coefficient of
[
t
mj+1
j+1 · · · t

mκ−1
κ−1 tn+r

κ ] decrease the degree by
at least:

κ−1∑
l=j+1

ml + (n+ r).

Finally we get a polynomial in tj having degree:

degtj
(
tnj I(t1, . . . , tj)

)
6 n+ nκ − r −

κ−1∑
l=j+1

r = n+ nj .

Thus, as announced:

degtj
(
I(t1, . . . , tj)

)
6 nj . �

Notice that our theorem holds as well without the (natural) technical
assumption on the degree of f .
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