We give here a positive answer to a question asked by Y. Colin de Verdière concerning the converse of the following theorem, due to A. N. Varchenko: two germs of volume forms are equivalent with respect to diffeomorphisms preserving a germ of an isolated hypersurface singularity, if their difference is the differential of a form whose restriction on the smooth part of the hypersurface is exact.
Nous donnons ici une réponse positive à une question posée par Y. Colin de Verdière concernant la réciproque du théorème suivant, dû à A. N. Varchenko : deux germes de formes volumes sont équivalents modulo difféomorphismes préservant un germe d’hypersurface à singularités isolées, si leur différence est la différentielle d’une forme dont la restriction sur la partie lisse de l’hypersurface est exacte.
Keywords: Isolated Singularities, De Rham Cohomology, Volume Forms, Normal Forms
Mot clés : Singularités Isolées, Cohomologie de de Rham, Formes Volumes, Formes Normales
Kourliouros, Konstantinos 1
@article{AIF_2015__65_6_2437_0, author = {Kourliouros, Konstantinos}, title = {A {Converse} to a {Theorem} on {Normal} {Forms} of {Volume} {Forms} with {Respect} to a {Hypersurface}}, journal = {Annales de l'Institut Fourier}, pages = {2437--2447}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {6}, year = {2015}, doi = {10.5802/aif.2992}, zbl = {1336.32029}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2992/} }
TY - JOUR AU - Kourliouros, Konstantinos TI - A Converse to a Theorem on Normal Forms of Volume Forms with Respect to a Hypersurface JO - Annales de l'Institut Fourier PY - 2015 SP - 2437 EP - 2447 VL - 65 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2992/ DO - 10.5802/aif.2992 LA - en ID - AIF_2015__65_6_2437_0 ER -
%0 Journal Article %A Kourliouros, Konstantinos %T A Converse to a Theorem on Normal Forms of Volume Forms with Respect to a Hypersurface %J Annales de l'Institut Fourier %D 2015 %P 2437-2447 %V 65 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2992/ %R 10.5802/aif.2992 %G en %F AIF_2015__65_6_2437_0
Kourliouros, Konstantinos. A Converse to a Theorem on Normal Forms of Volume Forms with Respect to a Hypersurface. Annales de l'Institut Fourier, Volume 65 (2015) no. 6, pp. 2437-2447. doi : 10.5802/aif.2992. https://aif.centre-mersenne.org/articles/10.5802/aif.2992/
[1] Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math., Volume 2 (1970), pp. 103-161 | MR | Zbl
[2] Singular Lagrangian manifolds and semiclassical analysis, Duke Math. J., Volume 116 (2003) no. 2, pp. 263-298 | DOI | MR | Zbl
[3] Cohomology and holomorphic differential forms on complex analytic spaces, Ann. Scuola Norm. Sup. Pisa (3), Volume 24 (1970), pp. 65-77 | Numdam | MR | Zbl
[4] Relative cohomology and volume forms, Singularities (Warsaw, 1985) (Banach Center Publ.), Volume 20, PWN, Warsaw, 1988, pp. 207-222 | MR | Zbl
[5] Singular Lagrangian manifolds and their Lagrangian mappings, Current problems in mathematics. Newest results, Vol. 33 (Russian) (Itogi Nauki i Tekhniki), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, p. 55-112, 236 Translated in J. Soviet Math. 52 (1990), no. 4, 3246–3278 | MR | Zbl
[6] Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann., Volume 214 (1975), pp. 235-266 | MR | Zbl
[7] Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Mathematics, 151, Cambridge University Press, Cambridge, 2002, pp. x+270 | DOI | MR | Zbl
[8] Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. (4), Volume 7 (1974), p. 405-430 (1975) | Numdam | MR | Zbl
[9] Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math., Volume 14 (1971), pp. 123-142 | MR | Zbl
[10] Preuve d’une conjecture de Brieskorn, Manuscripta Math., Volume 2 (1970), pp. 301-308 | MR | Zbl
[11] Singularités Lagrangiennes, École Polytechnique (France) (2003) (Ph. D. Thesis)
[12] Infinite Lie groups and the formal aspects of dynamical systems, J. Math. Mech., Volume 10 (1961), pp. 451-474 | MR | Zbl
[13] Local classification of volume forms in the presence of a hypersurface, Funktsional. Anal. i Prilozhen., Volume 19 (1985) no. 4, p. 23-31, 95 | MR | Zbl
Cited by Sources: