Étale cohomology, cofinite generation, and p-adic L-functions
[Cohomologie étale, engendrement cofini, et fonctions L p-adiques]
Annales de l'Institut Fourier, Tome 65 (2015) no. 6, pp. 2331-2383.

Soit p un nombre premier. Nous étudions certains groupes de cohomologie étale à coefficients associés à une représentation d’Artin p-adique de groupe de Galois d’un corps des nombres k. Ces coefficients sont munis d’un tordu à la Tate modifié avec un indice p-adique. Ces groupes sont de type cofini, et nous déterminons la caractéristique d’Euler additive. Si k est totalement réel et la représentation est paire, nous étudions la relation entre le comportement ou la valeur de la fonction L p-adique en le point e de ce domaine et les groupes de cohomologie avec torsion p-adique 1-e. Dans certains cas, ceci donne une preuve courte d’une conjecture de Coates et Lichtenbaum, et de la conjecture équivariante des nombres de Tamagawa pour les fonctions L classiques. Pour p=2 nos résultats impliquant des fonctions L p-adiques dépendent d’une conjecture de la théorie d’Iwasawa.

Let p be a prime number. We study certain étale cohomology groups with coefficients associated to a p-adic Artin representation of the Galois group of a number field k. These coefficients are equipped with a modified Tate twist involving a p-adic index. The groups are cofinitely generated, and we determine the additive Euler characteristic. If k is totally real and the representation is even, we study the relation between the behaviour or the value of the p-adic L-function at the point e in its domain, and the cohomology groups with p-adic twist 1-e. In certain cases this gives short proofs of a conjecture by Coates and Lichtenbaum, and the equivariant Tamagawa number conjecture for classical L-functions. For p=2 our results involving p-adic L-functions depend on a conjecture in Iwasawa theory.

DOI : 10.5802/aif.2989
Classification : 11G40, 14F20, 11M41, 11S40, 14G10
Keywords: number field, étale cohomology, cofinite generation, Euler characteristic, Artin $L$-function, $p$-adic $L$-function
Mot clés : corps de nombres, cohomologie étale, génération cofinie, caractéristique d’Euler, fonction $ L $ d’Artin
de Jeu, Rob 1 ; Navilarekallu, Tejaswi 1

1 Faculteit der Exacte Wetenschappen Afdeling Wiskunde VU University Amsterdam De Boelelaan 1081a 1081 HV Amsterdam (The Netherlands)
@article{AIF_2015__65_6_2331_0,
     author = {de Jeu, Rob and Navilarekallu, Tejaswi},
     title = {\'Etale cohomology, cofinite generation, and $p$-adic $L$-functions},
     journal = {Annales de l'Institut Fourier},
     pages = {2331--2383},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {65},
     number = {6},
     year = {2015},
     doi = {10.5802/aif.2989},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2989/}
}
TY  - JOUR
AU  - de Jeu, Rob
AU  - Navilarekallu, Tejaswi
TI  - Étale cohomology, cofinite generation, and $p$-adic $L$-functions
JO  - Annales de l'Institut Fourier
PY  - 2015
SP  - 2331
EP  - 2383
VL  - 65
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2989/
DO  - 10.5802/aif.2989
LA  - en
ID  - AIF_2015__65_6_2331_0
ER  - 
%0 Journal Article
%A de Jeu, Rob
%A Navilarekallu, Tejaswi
%T Étale cohomology, cofinite generation, and $p$-adic $L$-functions
%J Annales de l'Institut Fourier
%D 2015
%P 2331-2383
%V 65
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2989/
%R 10.5802/aif.2989
%G en
%F AIF_2015__65_6_2331_0
de Jeu, Rob; Navilarekallu, Tejaswi. Étale cohomology, cofinite generation, and $p$-adic $L$-functions. Annales de l'Institut Fourier, Tome 65 (2015) no. 6, pp. 2331-2383. doi : 10.5802/aif.2989. https://aif.centre-mersenne.org/articles/10.5802/aif.2989/

[1] Barrett, J.; Burns, D. Annihilating Selmer modules, J. Reine Angew. Math., Volume 675 (2013), pp. 191-222 | MR | Zbl

[2] Báyer, P.; Neukirch, J. On values of zeta functions and l-adic Euler characteristics, Invent. Math., Volume 50 (1978/79) no. 1, pp. 35-64 | MR | Zbl

[3] Besser, A.; Buckingham, P.; de Jeu, R.; Roblot, X.-F. On the p-adic Beilinson conjecture for number fields, Pure Appl. Math. Q., Volume 5 (2009) no. 1, pp. 375-434 | DOI | MR | Zbl

[4] Bloch, Spencer; Kato, Kazuya L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progr. Math.), Volume 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333-400 | MR | Zbl

[5] Bourbaki, N. Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs, Actualités Scientifiques et Industrielles, No. 1314, Hermann, Paris, 1965, pp. iii+146 pp. (1 foldout) | Zbl

[6] Burns, D. On main conjectures in non-commutative Iwasawa theory and related conjectures, J. Reine Angew. Math., Volume 698 (2015), pp. 105-159 | DOI | MR

[7] Burns, D.; Flach, M. Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math., Volume 6 (2001), p. 501-570 (electronic) | MR | Zbl

[8] Burns, D.; Greither, C. On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math., Volume 153 (2003) no. 2, pp. 303-359 | DOI | MR | Zbl

[9] Chinburg, T.; Kolster, M.; Pappas, G.; Snaith, V. Galois structure of K-groups of rings of integers, K-Theory, Volume 14 (1998) no. 4, pp. 319-369 | MR | Zbl

[10] Coates, J.; Lichtenbaum, S. On l-adic zeta functions, Ann. of Math. (2), Volume 98 (1973), pp. 498-550 | MR | Zbl

[11] Ferrero, B.; Washington, L. The Iwasawa invariant μ p vanishes for abelian number fields, Ann. of Math. (2), Volume 109 (1979) no. 2, pp. 377-395 | DOI | MR | Zbl

[12] Flach, Matthias Euler characteristics in relative K-groups, Bull. London Math. Soc., Volume 32 (2000) no. 3, pp. 272-284 | DOI | MR | Zbl

[13] Flach, Matthias The equivariant Tamagawa number conjecture: a survey, Stark’s conjectures: recent work and new directions (Contemp. Math.), Volume 358, Amer. Math. Soc., Providence, RI, 2004, pp. 79-125 (With an appendix by C. Greither) | MR | Zbl

[14] Flach, Matthias On the cyclotomic main conjecture for the prime 2, J. Reine Angew. Math., Volume 661 (2011), pp. 1-36 | MR | Zbl

[15] Fontaine, J.-M. Valeurs spéciales des fonctions L des motifs, Astérisque (1992) no. 206, pp. Exp. No. 751, 4, 205-249 (Séminaire Bourbaki, Vol. 1991/92) | Numdam | MR | Zbl

[16] Greenberg, R. On p-adic L-functions and cyclotomic fields. II, Nagoya Math. J., Volume 67 (1977), pp. 139-158 | MR | Zbl

[17] Greenberg, R. On p-adic Artin L-functions, Nagoya Math. J., Volume 89 (1983), pp. 77-87 | MR | Zbl

[18] Huber, A.; Kings, G. Bloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters, Duke Math. J., Volume 119 (2003) no. 3, pp. 393-464 | DOI | MR | Zbl

[19] Illusie, Luc Cohomologie l -adique et fonctions L , Lecture Notes in Mathematics, Vol. 589, Springer-Verlag, Berlin-New York, 1977, pp. xii+484 Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5) | MR

[20] Iwasawa, K. On l -extensions of algebraic number fields, Ann. of Math. (2), Volume 98 (1973), pp. 246-326 | MR | Zbl

[21] Jannsen, Uwe Continuous étale cohomology, Math. Ann., Volume 280 (1988) no. 2, pp. 207-245 | DOI | MR | Zbl

[22] Knudsen, F. F.; Mumford, D. The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand., Volume 39 (1976) no. 1, pp. 19-55 | MR | Zbl

[23] Lichtenbaum, S. On the values of zeta and L-functions. I, Ann. of Math. (2), Volume 96 (1972), pp. 338-360 | MR | Zbl

[24] Milne, J. S. Étale cohomology, Princeton University Press, Princeton, N.J., 1980, pp. xiii+323 | MR | Zbl

[25] Milne, J. S. Arithmetic duality theorems, Perspectives in Mathematics, 1, Academic Press, Inc., Boston, MA, 1986, pp. x+421 | MR | Zbl

[26] Neukirch, J. Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 322, Springer-Verlag, Berlin, 1999, pp. xviii+571 (Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder) | MR | Zbl

[27] Neukirch, J.; Schmidt, A.; Wingberg, K. Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 323, Springer-Verlag, Berlin, 2008, pp. xvi+825 | MR | Zbl

[28] Perrin-Riou, B. p -adic L -functions and p -adic representations, SMF/AMS Texts and Monographs, 3, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2000, pp. xx+150 (Translated from the 1995 French original by Leila Schneps and revised by the author) | MR | Zbl

[29] Ribet, K. Report on p-adic L-functions over totally real fields, Journées Arithmétiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978) (Astérisque), Volume 61, Soc. Math. France, Paris, 1979, pp. 177-192 | MR

[30] Schmidt, A. On the relation between 2 and in Galois cohomology of number fields, Compositio Math., Volume 133 (2002) no. 3, pp. 267-288 | DOI | MR | Zbl

[31] Serre, J.-P. Linear representations of finite groups, Springer-Verlag, New York, 1977, pp. x+170 (Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42) | MR | Zbl

[32] Tate, J. Duality theorems in Galois cohomology over number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 288-295 | MR | Zbl

[33] Tate, J. Relations between K 2 and Galois cohomology, Invent. Math., Volume 36 (1976), pp. 257-274 | MR | Zbl

[34] Washington, L. Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997, pp. xiv+487 | MR | Zbl

[35] Wiles, A. The Iwasawa conjecture for totally real fields, Ann. of Math. (2), Volume 131 (1990) no. 3, pp. 493-540 | MR | Zbl

Cité par Sources :