Soit un nombre premier. Nous étudions certains groupes de cohomologie étale à coefficients associés à une représentation d’Artin -adique de groupe de Galois d’un corps des nombres . Ces coefficients sont munis d’un tordu à la Tate modifié avec un indice -adique. Ces groupes sont de type cofini, et nous déterminons la caractéristique d’Euler additive. Si est totalement réel et la représentation est paire, nous étudions la relation entre le comportement ou la valeur de la fonction -adique en le point de ce domaine et les groupes de cohomologie avec torsion -adique . Dans certains cas, ceci donne une preuve courte d’une conjecture de Coates et Lichtenbaum, et de la conjecture équivariante des nombres de Tamagawa pour les fonctions classiques. Pour nos résultats impliquant des fonctions -adiques dépendent d’une conjecture de la théorie d’Iwasawa.
Let be a prime number. We study certain étale cohomology groups with coefficients associated to a -adic Artin representation of the Galois group of a number field . These coefficients are equipped with a modified Tate twist involving a -adic index. The groups are cofinitely generated, and we determine the additive Euler characteristic. If is totally real and the representation is even, we study the relation between the behaviour or the value of the -adic -function at the point in its domain, and the cohomology groups with -adic twist . In certain cases this gives short proofs of a conjecture by Coates and Lichtenbaum, and the equivariant Tamagawa number conjecture for classical -functions. For our results involving -adic -functions depend on a conjecture in Iwasawa theory.
Keywords: number field, étale cohomology, cofinite generation, Euler characteristic, Artin $L$-function, $p$-adic $L$-function
Mot clés : corps de nombres, cohomologie étale, génération cofinie, caractéristique d’Euler, fonction $ L $ d’Artin
de Jeu, Rob 1 ; Navilarekallu, Tejaswi 1
@article{AIF_2015__65_6_2331_0, author = {de Jeu, Rob and Navilarekallu, Tejaswi}, title = {\'Etale cohomology, cofinite generation, and $p$-adic $L$-functions}, journal = {Annales de l'Institut Fourier}, pages = {2331--2383}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {6}, year = {2015}, doi = {10.5802/aif.2989}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2989/} }
TY - JOUR AU - de Jeu, Rob AU - Navilarekallu, Tejaswi TI - Étale cohomology, cofinite generation, and $p$-adic $L$-functions JO - Annales de l'Institut Fourier PY - 2015 SP - 2331 EP - 2383 VL - 65 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2989/ DO - 10.5802/aif.2989 LA - en ID - AIF_2015__65_6_2331_0 ER -
%0 Journal Article %A de Jeu, Rob %A Navilarekallu, Tejaswi %T Étale cohomology, cofinite generation, and $p$-adic $L$-functions %J Annales de l'Institut Fourier %D 2015 %P 2331-2383 %V 65 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2989/ %R 10.5802/aif.2989 %G en %F AIF_2015__65_6_2331_0
de Jeu, Rob; Navilarekallu, Tejaswi. Étale cohomology, cofinite generation, and $p$-adic $L$-functions. Annales de l'Institut Fourier, Tome 65 (2015) no. 6, pp. 2331-2383. doi : 10.5802/aif.2989. https://aif.centre-mersenne.org/articles/10.5802/aif.2989/
[1] Annihilating Selmer modules, J. Reine Angew. Math., Volume 675 (2013), pp. 191-222 | MR | Zbl
[2] On values of zeta functions and -adic Euler characteristics, Invent. Math., Volume 50 (1978/79) no. 1, pp. 35-64 | MR | Zbl
[3] On the -adic Beilinson conjecture for number fields, Pure Appl. Math. Q., Volume 5 (2009) no. 1, pp. 375-434 | DOI | MR | Zbl
[4] -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progr. Math.), Volume 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333-400 | MR | Zbl
[5] Éléments de mathématique. Fasc. XXXI. Algèbre commutative. Chapitre 7: Diviseurs, Actualités Scientifiques et Industrielles, No. 1314, Hermann, Paris, 1965, pp. iii+146 pp. (1 foldout) | Zbl
[6] On main conjectures in non-commutative Iwasawa theory and related conjectures, J. Reine Angew. Math., Volume 698 (2015), pp. 105-159 | DOI | MR
[7] Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math., Volume 6 (2001), p. 501-570 (electronic) | MR | Zbl
[8] On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math., Volume 153 (2003) no. 2, pp. 303-359 | DOI | MR | Zbl
[9] Galois structure of -groups of rings of integers, -Theory, Volume 14 (1998) no. 4, pp. 319-369 | MR | Zbl
[10] On -adic zeta functions, Ann. of Math. (2), Volume 98 (1973), pp. 498-550 | MR | Zbl
[11] The Iwasawa invariant vanishes for abelian number fields, Ann. of Math. (2), Volume 109 (1979) no. 2, pp. 377-395 | DOI | MR | Zbl
[12] Euler characteristics in relative -groups, Bull. London Math. Soc., Volume 32 (2000) no. 3, pp. 272-284 | DOI | MR | Zbl
[13] The equivariant Tamagawa number conjecture: a survey, Stark’s conjectures: recent work and new directions (Contemp. Math.), Volume 358, Amer. Math. Soc., Providence, RI, 2004, pp. 79-125 (With an appendix by C. Greither) | MR | Zbl
[14] On the cyclotomic main conjecture for the prime 2, J. Reine Angew. Math., Volume 661 (2011), pp. 1-36 | MR | Zbl
[15] Valeurs spéciales des fonctions des motifs, Astérisque (1992) no. 206, pp. Exp. No. 751, 4, 205-249 (Séminaire Bourbaki, Vol. 1991/92) | Numdam | MR | Zbl
[16] On -adic -functions and cyclotomic fields. II, Nagoya Math. J., Volume 67 (1977), pp. 139-158 | MR | Zbl
[17] On -adic Artin -functions, Nagoya Math. J., Volume 89 (1983), pp. 77-87 | MR | Zbl
[18] Bloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters, Duke Math. J., Volume 119 (2003) no. 3, pp. 393-464 | DOI | MR | Zbl
[19] Cohomologie -adique et fonctions , Lecture Notes in Mathematics, Vol. 589, Springer-Verlag, Berlin-New York, 1977, pp. xii+484 Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5) | MR
[20] On -extensions of algebraic number fields, Ann. of Math. (2), Volume 98 (1973), pp. 246-326 | MR | Zbl
[21] Continuous étale cohomology, Math. Ann., Volume 280 (1988) no. 2, pp. 207-245 | DOI | MR | Zbl
[22] The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand., Volume 39 (1976) no. 1, pp. 19-55 | MR | Zbl
[23] On the values of zeta and -functions. I, Ann. of Math. (2), Volume 96 (1972), pp. 338-360 | MR | Zbl
[24] Étale cohomology, Princeton University Press, Princeton, N.J., 1980, pp. xiii+323 | MR | Zbl
[25] Arithmetic duality theorems, Perspectives in Mathematics, 1, Academic Press, Inc., Boston, MA, 1986, pp. x+421 | MR | Zbl
[26] Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 322, Springer-Verlag, Berlin, 1999, pp. xviii+571 (Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder) | MR | Zbl
[27] Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 323, Springer-Verlag, Berlin, 2008, pp. xvi+825 | MR | Zbl
[28] -adic -functions and -adic representations, SMF/AMS Texts and Monographs, 3, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2000, pp. xx+150 (Translated from the 1995 French original by Leila Schneps and revised by the author) | MR | Zbl
[29] Report on -adic -functions over totally real fields, Journées Arithmétiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978) (Astérisque), Volume 61, Soc. Math. France, Paris, 1979, pp. 177-192 | MR
[30] On the relation between 2 and in Galois cohomology of number fields, Compositio Math., Volume 133 (2002) no. 3, pp. 267-288 | DOI | MR | Zbl
[31] Linear representations of finite groups, Springer-Verlag, New York, 1977, pp. x+170 (Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42) | MR | Zbl
[32] Duality theorems in Galois cohomology over number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 288-295 | MR | Zbl
[33] Relations between and Galois cohomology, Invent. Math., Volume 36 (1976), pp. 257-274 | MR | Zbl
[34] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997, pp. xiv+487 | MR | Zbl
[35] The Iwasawa conjecture for totally real fields, Ann. of Math. (2), Volume 131 (1990) no. 3, pp. 493-540 | MR | Zbl
Cité par Sources :