Nous définissons faible, une généralisation de sur les domaines bornés dans une variété de Stein qui suffit à prouver que l’image de est fermée. Sous l’hypothèse d’une faible, nous montrons également que (i) les -formes harmoniques sont triviales et (ii) si satisfait une faible et une faible, alors a une image fermée sur les -formes sur . Nous fournissons des exemples pour montrer que notre condition contient des exemples qui sont exclus de la -pseudoconvexité et la notion précédente des auteurs de faible.
We define weak , a generalization of on bounded domains in a Stein manifold that suffices to prove closed range of . Under the hypothesis of weak , we also show (i) that harmonic -forms are trivial and (ii) if satisfies weak and weak , then has closed range on -forms on . We provide examples to show that our condition contains examples that are excluded from -pseudoconvexity and the authors’ previous notion of weak .
Keywords: Stein manifold, $\bar{\partial }_b$, tangential Cauchy-Riemann operator, closed range, $\bar{\partial }$-Neumann, weak $Z(q)$, $q$-pseudoconvexity
Mot clés : variété de Stein, $\bar{\partial }_b$, tangentielle opérateur de Cauchy-Riemann, image fermée, $\bar{\partial }$-Neumann, faible $Z(q)$, $q$-pseudoconvexité
Harrington, Phillip S.  ; Raich, Andrew S. 1
@article{AIF_2015__65_4_1711_0, author = {Harrington, Phillip S. and Raich, Andrew S.}, title = {Closed {Range} for $\bar{\partial }$ and $\bar{\partial }_b$ on {Bounded} {Hypersurfaces} in {Stein} {Manifolds}}, journal = {Annales de l'Institut Fourier}, pages = {1711--1754}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {4}, year = {2015}, doi = {10.5802/aif.2972}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2972/} }
TY - JOUR AU - Harrington, Phillip S. AU - Raich, Andrew S. TI - Closed Range for $\bar{\partial }$ and $\bar{\partial }_b$ on Bounded Hypersurfaces in Stein Manifolds JO - Annales de l'Institut Fourier PY - 2015 SP - 1711 EP - 1754 VL - 65 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2972/ DO - 10.5802/aif.2972 LA - en ID - AIF_2015__65_4_1711_0 ER -
%0 Journal Article %A Harrington, Phillip S. %A Raich, Andrew S. %T Closed Range for $\bar{\partial }$ and $\bar{\partial }_b$ on Bounded Hypersurfaces in Stein Manifolds %J Annales de l'Institut Fourier %D 2015 %P 1711-1754 %V 65 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2972/ %R 10.5802/aif.2972 %G en %F AIF_2015__65_4_1711_0
Harrington, Phillip S.; Raich, Andrew S. Closed Range for $\bar{\partial }$ and $\bar{\partial }_b$ on Bounded Hypersurfaces in Stein Manifolds. Annales de l'Institut Fourier, Tome 65 (2015) no. 4, pp. 1711-1754. doi : 10.5802/aif.2972. https://aif.centre-mersenne.org/articles/10.5802/aif.2972/
[1] Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, Volume 90 (1962), pp. 193-259 | Numdam | MR | Zbl
[2] E. E. Levi convexity and the Hans Lewy problem. I. Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa (3), Volume 26 (1972), pp. 325-363 | Numdam | MR | Zbl
[3] Problème de Levi pour les classes de cohomologie, C. R. Acad. Sci. Paris, Volume 258 (1964), pp. 778-781 | MR | Zbl
[4] Local solvability of the -equation with boundary regularity on weakly -convex domains, Math. Ann., Volume 334 (2006) no. 1, pp. 143-152 | DOI | MR | Zbl
[5] Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, 19, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001, pp. xii+380 | MR | Zbl
[6] Cohomologically complete and pseudoconvex domains, Comment. Math. Helv., Volume 55 (1980) no. 3, pp. 413-426 | DOI | MR | Zbl
[7] The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972, pp. viii+146 (Annals of Mathematics Studies, No. 75) | MR | Zbl
[8] Sobolev estimates for the Cauchy-Riemann complex on pseudoconvex domains, Math. Z., Volume 262 (2009) no. 1, pp. 199-217 | DOI | MR | Zbl
[9] Regularity results for on CR-manifolds of hypersurface type, Comm. Partial Differential Equations, Volume 36 (2011) no. 1, pp. 134-161 | DOI | MR | Zbl
[10] On boundaries of complex analytic varieties. I, Ann. of Math. (2), Volume 102 (1975) no. 2, pp. 223-290 | DOI | MR | Zbl
[11] Global integral formulas for solving the -equation on Stein manifolds, Ann. Polon. Math., Volume 39 (1981), pp. 93-116 | MR | Zbl
[12] -problem on weakly -convex domains, Math. Ann., Volume 290 (1991) no. 1, pp. 3-18 | DOI | MR | Zbl
[13] estimates and existence theorems for the operator, Acta Math., Volume 113 (1965), pp. 89-152 | DOI | MR | Zbl
[14] An introduction to complex analysis in several variables, North-Holland Mathematical Library, 7, North-Holland Publishing Co., Amsterdam, 1990, pp. xii+254 | MR | Zbl
[15] The null space of the -Neumann operator, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 5, p. 1305-1369, xiv, xx | DOI | Numdam | MR | Zbl
[16] Distance to hypersurfaces, J. Differential Equations, Volume 40 (1981) no. 1, pp. 116-120 | DOI | MR | Zbl
[17] Transformation de Bochner-Martinelli dans une variété de Stein, Séminaire d’Analyse P. Lelong–P. Dolbeault–H. Skoda, Années 1985/1986 (Lecture Notes in Math.), Volume 1295, Springer, Berlin, 1987, pp. 96-131 | MR | Zbl
[18] Global regularity for on weakly pseudoconvex CR manifolds, Adv. Math., Volume 199 (2006) no. 2, pp. 356-447 | DOI | MR | Zbl
[19] Compactness of the complex Green operator on CR-manifolds of hypersurface type, Math. Ann., Volume 348 (2010) no. 1, pp. 81-117 | DOI | MR | Zbl
[20] Global solvability and regularity for on an annulus between two weakly pseudoconvex domains, Trans. Amer. Math. Soc., Volume 291 (1985) no. 1, pp. 255-267 | MR | Zbl
[21] -estimates and existence theorems for the tangential Cauchy-Riemann complex, Invent. Math., Volume 82 (1985) no. 1, pp. 133-150 | DOI | MR | Zbl
[22] estimates and existence theorems for on Lipschitz boundaries, Math. Z., Volume 244 (2003) no. 1, pp. 91-123 | DOI | MR | Zbl
[23] The closed range property for on domains with pseudoconcave boundary, Complex analysis (Trends Math.), Birkhäuser/Springer Basel AG, Basel, 2010, pp. 307-320 | MR | Zbl
[24] Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geom., Volume 17 (1982) no. 1, pp. 55-138 | MR | Zbl
[25] Lectures on the -Sobolev theory of the -Neumann problem, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2010, pp. viii+206 | MR | Zbl
[26] The complex Green operator on CR-submanifolds of of hypersurface type: compactness, Trans. Amer. Math. Soc., Volume 364 (2012) no. 8, pp. 4107-4125 | DOI | MR | Zbl
[27] Complex analysis and CR geometry, University Lecture Series, 43, American Mathematical Society, Providence, RI, 2008, pp. viii+200 | MR | Zbl
Cité par Sources :