Nous étudions la géométrie tropicale dans le cadre global en utilisant la rétraction par déformation construite par V. Berkovich. Nous montrons les conditions d’équilibre généralisées dans ce cadre. À partir d’un schéma formel strictement semi-stable, nous calculons certains faisceaux de cycles évanescents par la cohomologie étale analytique, puis nous interprétons les vecteurs de poids tropical via ces cycles. Nous obtenons la condition d’équilibre pour les courbes tropicales sur le squelette associé au schéma formel en fonction de la théorie d’intersection sur la fibre spéciale. Notre approche fonctionne pour tout corps complet de valuation discrète.
We study tropical geometry in the global setting using Berkovich’s deformation retraction. We state and prove the generalized balancing conditions in this setting. Starting with a strictly semi-stable formal scheme, we calculate certain sheaves of vanishing cycles using analytic étale cohomology, then we interpret the tropical weight vectors via these cycles. We obtain the balancing condition for tropical curves on the skeleton associated to the formal scheme in terms of the intersection theory on the special fiber. Our approach works over any complete discrete valuation field.
Keywords: balancing condition, tropical curve, Berkovich space, vanishing cycle
Mot clés : condition d’équilibre, courbe tropicale, espace de Berkovich, cycle évanescent
Yu, Tony Yue 1
@article{AIF_2015__65_4_1647_0, author = {Yu, Tony Yue}, title = {Balancing conditions in global tropical geometry}, journal = {Annales de l'Institut Fourier}, pages = {1647--1667}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {4}, year = {2015}, doi = {10.5802/aif.2970}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2970/} }
TY - JOUR AU - Yu, Tony Yue TI - Balancing conditions in global tropical geometry JO - Annales de l'Institut Fourier PY - 2015 SP - 1647 EP - 1667 VL - 65 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2970/ DO - 10.5802/aif.2970 LA - en ID - AIF_2015__65_4_1647_0 ER -
%0 Journal Article %A Yu, Tony Yue %T Balancing conditions in global tropical geometry %J Annales de l'Institut Fourier %D 2015 %P 1647-1667 %V 65 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2970/ %R 10.5802/aif.2970 %G en %F AIF_2015__65_4_1647_0
Yu, Tony Yue. Balancing conditions in global tropical geometry. Annales de l'Institut Fourier, Tome 65 (2015) no. 4, pp. 1647-1667. doi : 10.5802/aif.2970. https://aif.centre-mersenne.org/articles/10.5802/aif.2970/
[1] On analytic surfaces with double points, Proc. Roy. Soc. London. Ser. A, Volume 247 (1958), pp. 237-244 | DOI | MR | Zbl
[2] Nonarchimedean geometry, tropicalization, and metrics on curves (2011) (http://arxiv.org/abs/1104.0320)
[3] Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, Providence, RI, 1990, pp. x+169 | MR | Zbl
[4] Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes Études Sci. Publ. Math. (1993) no. 78, p. 5-161 (1994) | DOI | EuDML | Numdam | MR | Zbl
[5] Vanishing cycles for formal schemes, Invent. Math., Volume 115 (1994) no. 3, pp. 539-571 | DOI | EuDML | MR | Zbl
[6] Vanishing cycles for formal schemes. II, Invent. Math., Volume 125 (1996) no. 2, pp. 367-390 | DOI | MR | Zbl
[7] Smooth -adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999) no. 1, pp. 1-84 | DOI | MR | Zbl
[8] Singular semipositive metrics in non-archimedean geometry (2011) (http://arxiv.org/abs/1201.0187)
[9] A lemma on nearby cycles and its application to the tame Lubin-Tate space, Math. Res. Lett., Volume 19 (2012) no. 1, pp. 165-173 | DOI | MR | Zbl
[10] La structure des courbes analytiques (En cours de rédaction, date du 15/11/2012)
[11] Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math., Volume 601 (2006), pp. 139-157 | DOI | MR | Zbl
[12] Groupes de monodromie en géométrie algébrique. II, Lecture Notes in Mathematics, Vol. 340, Springer-Verlag, Berlin-New York, 1973, pp. x+438 Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Dirigé par P. Deligne et N. Katz
[13] A guide to tropicalizations, Algebraic and combinatorial aspects of tropical geometry (Contemp. Math.), Volume 589, Amer. Math. Soc., Providence, RI, 2013, pp. 125-189 | DOI | MR
[14] Skeletons and tropicalizations (2014) (http://arxiv.org/abs/1404.7044)
[15] Non-archimedean Kähler geometry (2002) (www.ihes.fr/~maxim/TEXTS/Non-archimedean Kahler geometry.pdf)
[16] The criteria for algebraic equivalence and the torsion group, Amer. J. Math., Volume 79 (1957), pp. 53-66 | DOI | MR | Zbl
[17] Enumerative tropical algebraic geometry in , J. Amer. Math. Soc., Volume 18 (2005) no. 2, pp. 313-377 | DOI | MR | Zbl
[18] Toric degenerations of toric varieties and tropical curves, Duke Math. J., Volume 135 (2006) no. 1, pp. 1-51 | DOI | MR | Zbl
[19] Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik, Invent. Math., Volume 68 (1982) no. 1, pp. 21-101 | DOI | MR | Zbl
[20] Uniformizing tropical curves I: genus zero and one (2007) (http://arxiv.org/abs/0711.2677)
[21] Gromov compactness in non-archimedean analytic geometry (2014) (http://arxiv.org/abs/1401.6452)
Cité par Sources :