Nous démontrons un théorème de comparaison entre la transformation de Radon et la transformation de Fourier-Laplace pour les -modules. Ceci généralise des resultats de Brylinski et de d’Agnolo-Eastwood.
We prove a comparison theorem between the -plane Radon transform and the Fourier-Laplace transform for -modules. This generalizes results of Brylinski and d’Agnolo-Eastwood.
Keywords: $\mathcal{D}$-modules, Radon transform, Fourier-Laplace transform
Mot clés : $\mathcal{D}$-modules, transformation de Radon, transformation de Fourier-Laplace
Reichelt, Thomas 1
@article{AIF_2015__65_4_1577_0, author = {Reichelt, Thomas}, title = {A comparison theorem between {Radon} and {Fourier-Laplace} transforms for {D-modules}}, journal = {Annales de l'Institut Fourier}, pages = {1577--1616}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {4}, year = {2015}, doi = {10.5802/aif.2968}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2968/} }
TY - JOUR AU - Reichelt, Thomas TI - A comparison theorem between Radon and Fourier-Laplace transforms for D-modules JO - Annales de l'Institut Fourier PY - 2015 SP - 1577 EP - 1616 VL - 65 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2968/ DO - 10.5802/aif.2968 LA - en ID - AIF_2015__65_4_1577_0 ER -
%0 Journal Article %A Reichelt, Thomas %T A comparison theorem between Radon and Fourier-Laplace transforms for D-modules %J Annales de l'Institut Fourier %D 2015 %P 1577-1616 %V 65 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2968/ %R 10.5802/aif.2968 %G en %F AIF_2015__65_4_1577_0
Reichelt, Thomas. A comparison theorem between Radon and Fourier-Laplace transforms for D-modules. Annales de l'Institut Fourier, Tome 65 (2015) no. 4, pp. 1577-1616. doi : 10.5802/aif.2968. https://aif.centre-mersenne.org/articles/10.5802/aif.2968/
[1] Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque (1986) no. 140-141, p. 3-134, 251 (Géométrie et analyse microlocales) | MR | Zbl
[2] Sheaves and -modules in integral geometry, Analysis, geometry, number theory: the mathematics of Leon Ehrenpreis (Philadelphia, PA, 1998) (Contemp. Math.), Volume 251, Amer. Math. Soc., Providence, RI, 2000, pp. 141-161 | MR | Zbl
[3] Radon and Fourier transforms for -modules, Adv. Math., Volume 180 (2003) no. 2, pp. 452-485 | DOI | MR | Zbl
[4] Leray’s quantization of projective duality, Duke Math. J., Volume 84 (1996) no. 2, pp. 453-496 | DOI | MR | Zbl
[5] Radon-Penrose transform for -modules, J. Funct. Anal., Volume 139 (1996) no. 2, pp. 349-382 | DOI | MR | Zbl
[6] Cohomology and massless fields, Comm. Math. Phys., Volume 78 (1980/81) no. 3, pp. 305-351 | DOI | MR | Zbl
[7] A duality in integral geometry on symmetric spaces, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965), Nippon Hyoronsha, Tokyo, 1966, pp. 37-56 | MR | Zbl
[8] -modules, perverse sheaves, and representation theory, Progress in Mathematics, 236, Birkhäuser Boston Inc., Boston, MA, 2008, pp. xii+407 (Translated from the 1995 Japanese edition by Takeuchi) | DOI | MR | Zbl
[9] Transformation de Fourier et majoration de sommes exponentielles, Inst. Hautes Études Sci. Publ. Math. (1985) no. 62, pp. 361-418 | Numdam | MR | Zbl
[10] Transformation de Fourier géometrique, Astérisque (1988) no. 161-162, p. Exp. No. 692, 4, 133-150 (1989) (Séminaire Bourbaki, Vol. 1987/88) | Numdam | MR | Zbl
[11] Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.- Nat. Kl., Volume 69 (1917), pp. 262-277 | MR
[12] Laurent polynomials, GKZ-hypergeometric systems and mixed Hodge modules, Compos. Math., Volume 150 (2014) no. 6, pp. 911-941 | DOI | MR
Cité par Sources :