Nous formulons une version de la conjecture de Breuil–Mézard pour les algèbres de quaternions. Nous montrons que cette version est une consequence de la version originale pour . Une partie de la démonstration est la construction d’un analogue modulo de la correspondance de Jacquet–Langlands pour les représentations de ou est un corps fini de caractéristique .
We formulate a version of the Breuil–Mézard conjecture for quaternion algebras, and show that it follows from the Breuil–Mézard conjecture for . In the course of the proof we establish a mod analogue of the Jacquet–Langlands correspondence for representations of , a finite field of characteristic .
Keywords: Galois representations, Breuil–Mézard Conjecture
Mot clés : Représentations galoisiennes, Conjecture de Breuil–Mézard
Gee, Toby 1 ; Geraghty, David 2
@article{AIF_2015__65_4_1557_0, author = {Gee, Toby and Geraghty, David}, title = {The {Breuil{\textendash}M\'ezard} {Conjecture} for quaternion algebras}, journal = {Annales de l'Institut Fourier}, pages = {1557--1575}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {4}, year = {2015}, doi = {10.5802/aif.2967}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2967/} }
TY - JOUR AU - Gee, Toby AU - Geraghty, David TI - The Breuil–Mézard Conjecture for quaternion algebras JO - Annales de l'Institut Fourier PY - 2015 SP - 1557 EP - 1575 VL - 65 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2967/ DO - 10.5802/aif.2967 LA - en ID - AIF_2015__65_4_1557_0 ER -
%0 Journal Article %A Gee, Toby %A Geraghty, David %T The Breuil–Mézard Conjecture for quaternion algebras %J Annales de l'Institut Fourier %D 2015 %P 1557-1575 %V 65 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2967/ %R 10.5802/aif.2967 %G en %F AIF_2015__65_4_1557_0
Gee, Toby; Geraghty, David. The Breuil–Mézard Conjecture for quaternion algebras. Annales de l'Institut Fourier, Tome 65 (2015) no. 4, pp. 1557-1575. doi : 10.5802/aif.2967. https://aif.centre-mersenne.org/articles/10.5802/aif.2967/
[1] Formes modulaires de Hilbert modulo et valeurs d’extensions entre caractères galoisiens, Ann. Sci. Éc. Norm. Supér. (4), Volume 47 (2014) no. 5, pp. 905-974 | MR
[2] Multiplicités modulaires et représentations de et de en , Duke Math. J., Volume 115 (2002) no. 2, pp. 205-310 (With an appendix by Guy Henniart) | DOI | MR | Zbl
[3] Représentations cuspidales du groupe linéaire, Ann. Sci. École Norm. Sup. (4), Volume 17 (1984) no. 2, pp. 191-225 | Numdam | MR | Zbl
[4] A correspondence between representations of local Galois groups and Lie-type groups, -functions and Galois representations (London Math. Soc. Lecture Note Ser.), Volume 320, Cambridge Univ. Press, Cambridge, 2007, pp. 187-206 | DOI | MR | Zbl
[5] The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, Forum Math. Pi, Volume 2 (2014), pp. e1, 56 | DOI | MR
[6] Serre weights for quaternion algebras, Compos. Math., Volume 147 (2011) no. 4, pp. 1059-1086 | DOI | MR | Zbl
[7] The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, 151, Princeton University Press, Princeton, NJ, 2001, pp. viii+276 (With an appendix by Vladimir G. Berkovich) | MR | Zbl
[8] Potentially semi-stable deformation rings, J. Amer. Math. Soc., Volume 21 (2008) no. 2, pp. 513-546 | DOI | MR | Zbl
[9] The Fontaine-Mazur conjecture for , J. Amer. Math. Soc., Volume 22 (2009) no. 3, pp. 641-690 | DOI | MR | Zbl
[10] The structure of potentially semi-stable deformation rings, Proceedings of the International Congress of Mathematicians. Volume II (2010), pp. 294-311 | MR | Zbl
[11] Character formulas for supercuspidal representations of a prime, Amer. J. Math., Volume 109 (1987) no. 2, pp. 201-221 | DOI | MR | Zbl
[12] On the Breuil-Mézard conjecture, Duke Math. J., Volume 164 (2015) no. 2, pp. 297-359 | DOI | MR
Cité par Sources :