On montre une inégalité de Cheeger pour la première valeur propre de Steklov. Elle fait intervenir deux constantes isopérimétriques.
We prove a Cheeger inequality for the first positive Steklov eigenvalue. It involves two isoperimetric constants.
Mot clés : inégalité de Cheeger, spectre de Steklov
Keywords: Cheeger inequality, Steklov eigenvalues.
Jammes, Pierre 1
@article{AIF_2015__65_3_1381_0, author = {Jammes, Pierre}, title = {Une in\'egalit\'e de {Cheeger} pour le spectre de {Steklov}}, journal = {Annales de l'Institut Fourier}, pages = {1381--1385}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {65}, number = {3}, year = {2015}, doi = {10.5802/aif.2960}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2960/} }
TY - JOUR AU - Jammes, Pierre TI - Une inégalité de Cheeger pour le spectre de Steklov JO - Annales de l'Institut Fourier PY - 2015 SP - 1381 EP - 1385 VL - 65 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2960/ DO - 10.5802/aif.2960 LA - fr ID - AIF_2015__65_3_1381_0 ER -
%0 Journal Article %A Jammes, Pierre %T Une inégalité de Cheeger pour le spectre de Steklov %J Annales de l'Institut Fourier %D 2015 %P 1381-1385 %V 65 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2960/ %R 10.5802/aif.2960 %G fr %F AIF_2015__65_3_1381_0
Jammes, Pierre. Une inégalité de Cheeger pour le spectre de Steklov. Annales de l'Institut Fourier, Tome 65 (2015) no. 3, pp. 1381-1385. doi : 10.5802/aif.2960. https://aif.centre-mersenne.org/articles/10.5802/aif.2960/
[1] On a mixed Poincaré-Steklov Type Spectral Problem in a Lipschitz Domain, Russ. J. Math. Phys., Volume 13 (2005) no. 3, pp. 239-244 | DOI | MR | Zbl
[2] Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, 7, Pitman, 1980 | MR | Zbl
[3] The bottom of the spectrum of a Riemannian covering, J. Reine Angew. Math., Volume 357 (1985), pp. 101-114 | MR | Zbl
[4] On Cheeger inequality , Geometry of the Laplace operator (Proc. Sympos. Pure Math., XXXVI), Amer. Math. Soc., 1980, pp. 29-77 | MR | Zbl
[5] A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969) (1970) | MR | Zbl
[6] Isoperimetric inequalities and the gap between the first and second eigenvalues of an Euclidean domain, J. Geom. Anal., Volume 7 (1997) no. 2, pp. 217-239 | DOI | MR | Zbl
[7] Isoperimetric control of the Steklov spectrum, J. Funct. Anal., Volume 261 (2011) no. 5, pp. 1384-1399 | DOI | MR | Zbl
[8] The geometry of the first non-zero Stekloff eigenvalue, J. Funct. Anal., Volume 150 (1997) no. 2, pp. 544-556 | DOI | MR | Zbl
[9] An isoperimetric Inequality and the first Steklov Eigenvalue, J. Funct. Anal., Volume 165 (1999) no. 1, pp. 101-116 | DOI | MR | Zbl
[10] On the Hersch-Payne-Schiffer inequalities for Steklov eigenvalues, Functional Analysis and its Applications, Volume 44 (2010) no. 2, pp. 106-117 | DOI | MR | Zbl
[11] Prescription du spectre du laplacien de Hodge-de Rham, Ann. scient. Éc. norm. sup. (4), Volume 37 (2004) no. 2, pp. 270-303 | Numdam | MR | Zbl
[12] Geometric Integration Theory, Birkäuser, 2008 | MR | Zbl
[13] The Dirichlet to Neumann map and applications, Inverse problems in partial differential equations (Arcata, CA, 1989) (1990), pp. 101-139 | MR | Zbl
[14] Electrical impedance tomography and Calderón’s problem, Inverse Problems, Volume 25 (2009) no. 12, pp. 123011, 39 | DOI | Zbl
Cité par Sources :